
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 10, Oct. 2015                                             3867 
Copyright ⓒ2015 KSII 

Opportunistic Spectrum Access with 
Discrete Feedback in Unknown and 

Dynamic Environment：A Multi-agent 
Learning Approach 

 
Zhan Gao1,2 , Junhong Chen2, and Yuhua Xu2 

1 The State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information 
System（CEMEE），Luoyang，471003，China 

2 PLA University of Science and Technology, China 
[e-mail: gzck111@sina.com, junhongchen0526@126.com, yuhuaenator@gmail.com] 

 *Corresponding author: Yuhua Xu 
 

Received November 5, 2014; revised January 19, 2015; revised May 8, 2015; accepted August 17, 2015;  
published October 31, 2015 

 

 

Abstract 
 

This article investigates the problem of opportunistic spectrum access in dynamic environment, 
in which the signal-to-noise ratio (SNR) is time-varying. Different from existing work on 
continuous feedback, we consider more practical scenarios in which the transmitter receives 
an Acknowledgment (ACK) if the received SNR is larger than the required threshold, and 
otherwise a Non-Acknowledgment (NACK). That is, the feedback is discrete. Several 
applications with different threshold values are also considered in this work. The channel 
selection problem is formulated as a non-cooperative game, and subsequently it is proved to be 
a potential game, which has at least one pure strategy Nash equilibrium. Following this, a 
multi-agent Q-learning algorithm is proposed to converge to Nash equilibria of the game. 
Furthermore, opportunistic spectrum access with multiple discrete feedbacks is also 
investigated. Finally, the simulation results verify that the proposed multi-agent Q-learning 
algorithm is applicable to both situations with binary feedback and multiple discrete 
feedbacks. 
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1. Introduction 

With the rapidly growing demand for wireless spectrum resources, spectrum shortage is 
becoming quite a serious problem. Some experts have pointed out that the shortage is in fact 
due to the inefficient spectrum access method [1], rather than the physical scarcity of the 
spectrum. Often, a portion of the available spectrum is licensed to some specific users for their 
exclusive usage. However, these licensed users only occupy the spectrum for a certain 
duration of time, resulting in a low efficiency of spectrum usage. For example, the average 
spectral occupancy is only 6.2% in urban Auckland, New Zealand in 2007 [2]. This inefficient 
usage of the spectrum highlights the need to find a highly efficient spectrum access method.  

Opportunistic spectrum access (OSA) has become increasingly popular due to its potential 
to improve the efficiency of spectrum usage [3]-[4]. However, many authors studying the 
problem of OSA assumed that the wireless environment is static and does not vary with time. 
This assumption is not realistic since the wireless environment is affected by many factors, 
such as fading, and hence the spectrum is always time-varying in cognitive radio networks 
(CRNs). 

Based on previous work, some authors began to study the problem of OSA considering a 
dynamic environment [5]-[6]. However, all this work ignored the following feature of CRNs: 
that the feedback is not continuous in nature. Influenced by fading and the dynamic nature of 
the environment, the signal-to-noise ratio (SNR) at the receiver is time-varying. To 
demodulate the received information correctly, the instantaneous received SNR at the receiver 
should be larger than a threshold value. Specifically, if the received SNR is larger than the 
required threshold, the transmitter receives an Acknowledgment (ACK), indicating the 
successful transmission. Otherwise, it receives a Non-Acknowledgment (NACK), indicating 
the failed transmission. That is, the feedback is discrete. Considering this discrete feedback, 
the approaches in the existing work designed for continuous feedback are not applicable to 
deal with the problem of OSA. Instead a new alorithm considering the dynamic environment 
and discrete feedback needs to be investigated. 

Firstly, the problem of distributed channel selection is formulated as a non-cooperative 
game, and then it is proved that this game is a potential game which has at least one pure 
strategy Nash equilibrium. A multi-agent Q-learning algorithm considering the dynamic 
environment and discrete feedback is then proposed. Users learn to adjust their channel 
selection strategies according to their received random and discrete feedbacks, and it is also 
proved that the algorithm can converge to Nash equilibrium (NE) in the unknown and dynamic 
environment. 

To summarize, the main contributions of this article are: 
1) We formulate the problem of opportunistic spectrum access with discrete feedback in 

the dynamic spectrum environment as a non-cooperative game, where the utility 
function is defined as the expected feedback of each user. In addition, it is also proved 
that this non-cooperative game is a potential game which has at least one pure strategy 
Nash equilibrium. 

2) We propose a multi-agent Q-learning algorithm where users learn to adjust the channel 
selection strategy to achieve the pure NE points of the game. Since users only need the 
current feedback to adjust the channel selection strategies and do not need information 
about other players, the proposed multi-agent Q-learning algorithm is fully distributed 
and autonomous. Furthermore, it is also proved that this proposed multi-agent 
Q-learning algorithm can converge to a Nash equilibria with discrete feedback. 
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The rest of the article is organized as follows. In Section 2, the related work is discussed. In 
Section 3, the system model is presented and the problem is formulated. In Section 4, we 
present the problem of opportunistic spectrum access as a non-cooperative game and 
investigate the properties of its NE. In Section 5 we propose a multi-agent learning algorithm 
for achieving the maximum system utility value and prove that the algorithm can achieve NE. 
The multiple discrete feedbacks are also investigated in this section. In Section 6, simulation 
results are presented and finally the conclusion is presented in Section 7. 

2. Related Work 
There are many solutions for OSA including game-theoretic, Markovian decision process, 
optimal stopping problem and the multi-armed bandit problem [7]. Game theory is really 
useful in analyzing the mutual interactions among multiple users [8]. It was first used in the 
economic area, but nowadays, it has been widely used in many other scenarios such as in 
wireless communication. Previous work has successfully applied game theory to distributed 
spectrum access in wireless communication systems, and several different game models have 
been used to solve specific problems e.g., evolutionary game [9], coalition game [10]-[11], 
static game and repeated game [12] models. However, some of the existing work assumed that 
the wireless environment is static, in which the channel states remain unchanged during the 
decision period. In [13], the author formulated the channel selection as an evolutionary game 
and assumed that the spectrum environment is static. By comparing their own payoffs with the 
system average payoff, users adjust the channel selection strategies to select a channel with a 
larger payoff. 

In fact, the above assumption is not realistic because the spectrum is always time-varying 
in cognitive radio networks. Hence, the approach proposed in [13] is not applicable to deal 
with the problem of OSA in a practical or dynamic environment. In this paper, the channel 
states are considered to be time-varying. Moreover, a dynamic CRN with multiple interactive 
users is considered where there is no information exchange among these users, i.e., each user 
does not require information about the other users’ channel selection. 

Based on previous work, some authors began to study the problem of distributed channel 
selection in dynamic environment. In [5], the authors investigated the distributed channel 
selection problem using a game-theoretic approach for an OSA system. Here, the dynamic 
means that the channel occupation state is time-varying. There are two channel states: 
occupied and idle. However, channel fading is not considered and the feedback of each 
transmission is assumed to be continuous. In this article, channel fading is considered, the 
received SNR at the receiver is time-varying and the feedback is discrete. The algorithm in [5] 
was originally designed for continuous feedback, and is not suitable for scenarios with discrete 
feedbacks. To deal with this problem, we proposed a novel multi-agent Q-learning algorithm 
in this work. 

Some preliminary results on game-theoretic optimization with discrete feedback was 
reported in our recent work [14]. While only binary feedback (i.e., the feedback is either one or 
zero) was considered in [14], in this article the problem of OSA with multiple discrete 
feedbacks is also investigated. Furthermore, a realistic wireless communication system 
includeing several different kinds of applications, such as data, image, voice and video 
transmission is also investigated. These different applications have different SNR threshold 
requirements at the receiver to demodulate information successfully. In other words, the 
problem of OSA under heterogeneous thresholds is investigated in this article. 

Compared with existing work that studies distributed channel selection in OSA systems, 
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our study has the following characteristics: (i) the wireless environment is dynamic and 
channels undergo fading, (ii) the feedback is discrete and only when the SNR at the receiver is 
larger than the threshold value can the user receive a positive feedback and (iii) different 
applications with different threshold values are considered.  

3. System Model and Problem Formulation 

3.1 System Model 
Let us consider a distributed cognitive radio system that coexists with  licensed channels 
and  secondary users. Each secondary user competes for one of  channels. Denote the 
secondary users set as  and the channels set as , and each 
secondary user link consists of a transmitter and a receiver. 

The transmission structure of a secondary user is shown in Fig. 1 [5]. It is assumed that 
time is divided into slots (with equal length) and the value of SNR of each channel is 
block-fixed in a slot and changes randomly in the next slot. Each slot contains a channel 
selection and sensing, contention, data transmission and learning period. During the 
contention period, when more than one user chooses the same channel, they share the channel 
using some multiple access mechanism, e.g., CSMA [15]. It is also assumed that each 
secondary user has an equal probability of successful access, i.e., if there are  secondary 
users contending for the same channel, then each secondary user will contend successfully 
with a probability of . Since the transmission structure is the same as that in [5], a detailed 
description is not provided here.  

 

 
Fig. 1. Transmission structure of the system. 

 

Let us suppose a user can receive a positive feedback only after a successful contention as 
well as when the received SNR is larger than the threshold value. Compared with previous 
work presented in [5] which considers continuous feedback, the feedback in this article is 
discrete. The key difference between the existing work and this article is shown 
diagrammatically in Fig. 2, in which,  is the action of user ,  represents the 
actions of the other users except user  and  is the feedback of user . Function 

 represents the interaction among users, in another words, this function 
determines the value of feedback  based on  and . 
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Fig. 2. (a) The illustrative diagram of learning procedure in most existing work; (b) the illustrative 

diagram of learnig procedure in our work. 

3.2 Problem Formulation 
In this work, it is assumed that all the channels undergo block fading. Due to channel fading, 
the SNR at the receiver may be very low and hence the receiver may not receive certain data 
packets successfully. In this case, the secondary user will get zero payoff. Let 

{ {1,..., } : }m ns n N a m= ∈ =  and | |m mc s= , i.e., mc  is the number of users choosing channel 
m and 1/ mc  is the probability that user n  contends for channel m successfully. nT  is the 
threshold value of user n , i.e., the minimum value of SNR that the receiver n  can demodulate 
information successfully. In the k th slot, the secondary user n  chooses channel m  and 

, ( )n mC k  denotes the instantaneous feedback for the secondary user n : 

,

1
1, . . Pr( )
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w p T
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η
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                                             (1) 

where mη  refers to the instantaneous received value of SNR when a user transmits on channel 
m  and Pr( )nm Tη >  denotes the probability that the SNR at the receiver on channel m  is 
larger than the threshold value. 

4. Game-theoretic Distributed Channel Selection 

4.1 Game Model 
In this system, there is no central controller and no information exchange among users. Instead, 
users make their decisions autonomously and in a distributive and interactive manner. All 
these factors motivate us to formulate the problem of distributed channel selection as a 
non-cooperative game. The opportunistic spectrum access game is denoted as 

c [ ,{ } ,{ } ]
u un n N n n NuN A u∈ ∈=G , where {1,..., }uN N=  is the set of players (secondary users), 

{1,..., }nA M=  is the set of available actions (channels) and nu  is the utility function of player 
n . The utility function, which is defined as the expected feedback of the secondary user n  
can be given as 

,( , ) [ ] Pr( ) ,
1

nn n n n m na
m

u a a C T
c

η− = = >E                               (2) 

where na−  is the channel selection profile of all the players except player n . Then the 
proposed channel selection game can be expressed as: 
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c( ) max ( , ).
n n

n n na A
u a a−∈

    G                                                (3) 

The throughput of the system is defined as the total utility value of all the secondary users: 

1
( , ).

N

n n n
n

U u a a−
=

= ∑                                                     (4) 

The definition of utility originates from the term ‘outage capacity’, which is defined as the 
rate that a reliable transmission can be achieved [16]. In this article, the utility is the 
probability that a user can achieve reliable transmission. Choosing the expected amount of 
feedback as the utility can guarantee that a user will choose a channel achieving a higher 
probability of successful transmission. The outage capacity has been well considered in the 
literature [17]-[19]. However, the difference in this work is as follows: the optimization of 
outage capacity is through the users’ online learning, while it is through central optimization in 
those reference articles. 

4.2 Analysis of Nash equilibrium (NE) 
In this subsection, we first put forward and then analyze the concept of a Nash equilibrium 
[20], which is the most well-known stable solution for a non-cooperative game model.  

Definition 1(NE). A channel selection profile * * *
1( ,..., )Na a a=  is a pure strategy NE if 

and only if no player can improve their utility by deviating unilaterally, i.e., 
* * *

.( , ) ( , ) ,n n n n n n u n nu a a u a a n N a A− −≥ ∀ ∈ ∀ ∈                           (5) 

The properties of the proposed game cG  are characterized by the following theorem. 

Theorem 1. cG  is an exact potential game which has at least one pure strategy NE point. 
Proof: As shown in (2), the number of secondary users selecting each channel m  is mc , 

{1,..., }m M∀ ∈ . The following potential function Φ  for the channel selection game can be 
defined as: 

1 1
( , ) ( ),

mcM

n n m
m i

a a iϕ−
= =

Φ = ∑∑                                               (6) 

where 
1

( ) Pr( )m mi T
i

ϕ η= > . The above function is also known as Rosenthal’s potential 

function [21]. 
Suppose that an arbitrary player n  unilaterally changes its channel selection from na  to 

na , then the change in individual utility function caused by this unilateral change is given by: 
( , ) ( , ) ( 1) ( ).

n nn nn n n n n a aan au a u a a c ca ϕ ϕ− −− = + −                            (7) 

In fact, player n ’s unilateral change only affects the users on the channel na  and na , with the 
change in the potential function given by: 

1 1

1 1 1 1
( , ) ( , ) ( ) ( ) ( ) ( )

( 1) ( ).

a aa an n n n

n nn n

n nn n

c cc c

n n n n a aa a
i i i i

a aa a

a a a a i i i i

c c

ϕ ϕ ϕ ϕ

ϕ ϕ

+ −

− −
= = = =

   
−     

  
Φ − Φ = + +

                                      = + −

∑ ∑ ∑ ∑       (8) 

Based on (7) and (8), we can get : 
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( , ) ( , ) ( , ) ( , ).n n n n n n n nn nu a u a a a a aa a− − − −− = Φ − Φ                              (9) 
From (9) it is evident that the change in individual utility function caused by the unilateral 
change is identical to the change in the potential function. According to the definition given in 
[21], the channel selection game is an exact potential game with a potential function Φ . An 
exact potential game belongs to a potential game, and every potential game has at least one 
pure strategy NE point. Therefore, Theorem1 is proved.                                                                   

5. Reinforcement Learning Solution for Achieving NE in Fading 
Environment 

Using a Q-learning algorithm, the users are only concerned about the result caused by their 
specific actions and do not require the information of channel selections of other users 
[22]-[23]. In this section, a multi-agent Q-learning algorithm is proposed to achieve the NE of 
the formulated opportunistic spectrum access game in the presence of unknown, dynamic and 
incomplete information constraints. 

Following the idea proposed in [24], a Q function is used to replace the utility function as 
shown in (10). The utility of (2) is the probability that a secondary user contends for the 
channel successfully as well as the SNR at the receiver is larger than the threshold value, i.e., 
communicate successfully. If we denote the frequency of successful communication of user n  
as ( )nX k , then we can get the frequency at the ( 1)k + th slot as (11), where ( 1)nC k +  is the 
feedback obtained by user n  at the ( 1)k + th slot. Since the value of ( 1)nC k + is either zero or 
one, the numerator of the equation is the number of successful transmissions, and the 
denominator is the total number of iterations. When k  tends to infinity we can say the 
frequency is equal to the probability, i.e., ( ( ), ( ))lim ( ) n n nnk

u a k a kX k −→∞
= . 

( ) ( ( ), ( )) ,n n n nQ k u a k a k−=                                                (10) 
( ) ( 1)

( 1)
1

.n n
n

kX k C k
k

k
X + +

+ =
+

                                         (11) 

Then, based on (10) and (11) we can deduce the Q value update function as: 

   
1 1

( 1) (1 ) ( ) ( 1) .
1 1n n nQ k Q k C k n N

k k
+ = − + +         ∀ ∈

+ +
                  (12) 

5.1 Algorithm Description 
To characterize the proposed multi-agent Q-learning algorithm, the channel selection game 

cG  can be extended to a mixed strategy form and give the following definition. Let 

1( , , ..., )= 2 NP P P P  denote the mixed strategy profile of the channel selection game. More 
specifically, ,1 ,2 ,( , , ..., ),n n n M uP P P n N=  ∀ ∈nP  is the channel selection probability vector of a 

secondary user n , where ,n mP  denotes the probability with which user n  selects channel m . 
The proposed multi-agent Q-learning algorithm is described in Algorithm 1. The stop 

criterion can be one of the following: 1) the maximum iteration number is reached, 2) for each 
player n , where un N∀ ∈ , there is a component of the channel selection probability 
sufficiently approaching one (e.g. 0.99). 
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Algorithm 1. Multi-agent Q-learning Algorithm for Distributed Channel Selection with 
Binary Feedback. 
Initialization: Set the iteration index 0k =  and the initial channel selection probability 
vector , ( ) 1/n mP k M= , , ( ) 0n mQ k = , , {1,..., }un N m M∀ ∈ ∀ ∈ . 
Loop for 0,1,...,k =  

Channel access and get random feedback: At the beginning of the k th slot, each 
secondary user n  selects a channel ( )na k  according to its current channel selection 
probability vector ( )nP k . Then, the secondary user performs channel sensing and channel 
contention. At the end of the k th slot, each secondary user n  receives the random feedback 

, ( )n mC k  specified by (1). 
Update Q-value: All the secondary users update their Q-value according to the following 

rules: 

, , ,

1 1
( 1) (1 ) ( ) ( 1), ( 1)

1 1n m n m n m nQ k Q k C k m a k
k k

+ = − + + = +
+ +

           (13) 

, ,( 1)= ( ) ( 1)n m n m nQ k Q k m a k+   ≠ +，                                         (14) 
Update channel selection probability: All the secondary users update their channel 

selection probability vectors according to the following rule: 
,

,

( ) /

, ( ) /
1

( 1) ,
n m

n m

Q k

n m M Q k
m

eP k
e

γ

γ

=

+ =
∑

                                                  (15) 

where γ  is called temperature and controls the frequency of exploration. The smaller γ  is, 
the more focused the actions are. Consequently, when 0γ → , each secondary user tend to 
select the channel with the largest Q-value. 
End loop 

 
The equations (13)-(15) show that users can update their channel selection strategies 

according to their own feedback, i.e., they can choose their channel independently and there is 
no information exchange among users. 

5.2 Convergence of Q-learning 
The Q-values for different users are mutually coupled and all Q-values change if one Q-value 
is changed. Based on (2) ,  (10) and (15), we have Q-values as follows: 

,

,
,

( ) /

( ) /
1

Pr( ) Pr( ( ) ) Pr( ) (1 ) ,
n m

n m
n m n l nl n l n

Q k

m m M Q k
m

Q T a k m T
e

e

γ

γ
η η

≠ ≠

=

= > ≠ = > −
∑

Π Π           (16) 

where Pr( )nm Tη >  is the probability that the SNR is larger than the threshold value of user n . 
We define the Q-values satisfying (16) as stationary points 

Following the idea in [12], we can get the following theorem. 
Theorem 2. The proposed multi-agent Q-learning algorithm converges to Nash equilibria 

with a probability of one. 
Proof: First let us define the following equation: 

1,1 1, 2,1 2, ,1 ,=( ,..., , , ..., , ..., , ..., ) .T
M M N N MQ Q Q Q Q Qq                                 (17) 
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Then (16) can be rewritten as: 
( ) ( ) 0,g = − =q A q q                                                       (18) 

,

,

( ) /

, ( ) /
1

Pr( ) (1 ) ,=
n m

n m
n l n

Q k

n m m M Q k
m

T
e

e

γ

γ
η

≠

=

> −
∑

A Π                               (19) 

where ,n mA  is the probability that user n  achieves successful communication (including the 

two aspects considered in this article). Futhermore, ,n mA  is also the expected feedback of user 
n  since the instantaneous feedback is either one or zero. 

Then, the updating rule in (13) is equivalent to solving equation (16) using the 
Robbins-Monro algorithm [25], i.e., 

( 1) (1 ) ( )
1 1 1( 1) ( ) ( ),

1 1 1
k k k k k

k k k
+ = − + + = +

+ + +
q q c q Y                   (20) 

where ( 1)k +c  is the vector of feedback and ( )kY satisfies the following equation: 

( ) ( 1) ( ) ( 1) ( ) ( 1) ( 1)
( ( )) ( )

k k k k k k k
g k kδ

= + − = + − + + − +

= +

Y c q c q c c
q m ，          

     (21)
 

where ( )( )= ( 1) ( ) ( )= ( 1) ( 1)kg k k k k kδ+ − + − +q c q m c c，  is noise, and ( 1)= ( (k))k +c A q . 
Obviously, E[ ( )]=0kδm  as the expectation of the difference between the feedback and the 
expected feedback is equal to zero. Therefore, the observation ( )kδm  is a Martingale 
difference. 

The procedure of Robbins-Monro algorithm (i.e. the updating of the Q-value) is the 
stochastic approximation of the solution for the equation. It is well known that the 
convergence of such a procedure can be characterized by an ordinary differential equation 
(ODE).  

According to Lemma 2 in [12], we know that with probability one, the sequence 
(k)q converges to some limit sets of the ODE: 

=g( ).q q                                                                  (22) 
Applying Lyapunov function, the solution of the ODE (22) converges to the stationary point 
determined by (18). Combining Lemmas 1, 2 and 3 from [12], it can be proved that the 
proposed multi-agent Q-learning algorithm converges to a stationary point with a probability 
of one. Therefore, Theorem 2 is proved.                                                                                             □                                                                                                                                  

5.3 Dynamic Spectrum Access with Multiple Discrete Feedbacks 
The above sections all consider that the feedback is binary, i.e., the feedback is either one or 
zero. In this subsection, we consider a more realistic wireless environment in which there are 
multiple feedbacks. The difference between binary feedback and multiple discrete feedbacks 
is shown in Fig. 3, where ir  represents the instantaneous feedback, and ( 1, 2,3)iT i =  is the 
different threshold values. 



3876                                                                                         Gao et al.: Oppotunistic Spectrum Access with Discrete Feedback 

SNR
0

1

Feedback Feedback

SNR
1TT 2T 3T

1r

2r

3r

(a) (b)

0

 
Fig. 3. (a) The sketch map of binary feedback; (b) the sketch map of multiple discrete feedbacks. 

 
Due to channel fading, the transmission rate of each channel is always time-varying. With 

the help of adaptive modulation and coding, the channel transmission rate is classified into 
several states according to the instantaneous received SNR. The rate set of channel m  is 
denoted as ,1 ,2 ,{ , , ... }m m m m LS s s s= . Practically, the channel rate set mS  can be obtained by the 
following procedure. First, partition the entire SNR region into L non-overlapping 
consecutive intervals with boundary points 1

0{ }L
iT − . Here, we apply the SNR region 

partitioning scheme whose objective is to maintain a predefined packet error rate. And then 

,m ls  is choosen if 1[ , )m l lT Tη −∈ , where mη  is the instantaneous received SNR of channel m . 
In this subsection, we define the feedback of user n  choosing channel m  as: 

,

,
1

, . .

1
0, . . 1 ,

m
n m

m

m ls w p
c

C
w p

c

=
−







                                                 (23) 

where ,m ls  is determined by comparing the instantaneous received SNR with different 

threshold values and mc  is the total number of users selecting channel m . 

Similar to binary feedback, we can define the utility as the expected feedback, which 
originates from the term outage capacity. The corresponding representation of utility is the 
same as that of binary feedback and hence is not repeated here. 

The interaction among users is formulated as a non-cooperative game, which has the same 
property as shown in Theorem 1. The learning approach with multiple discrete feedbacks is 
similar to Algorithm 1, the only difference is that the feedback in (13) is multiple rather than 
binary. Since the game model and the learning algorithm is the same as the case for dynamic 
spectrum access with binary feedback, it is not described again in this subsection.  

6. Simulation Results and Discussion 
In this section, we investigate the convergence and throughput performance of the proposed 
multi-agent Q-learning algorithm with binary feedback and multiple discrete feedbacks. Since 
channels undergo fading, we consider the SNR at each time slot is a random value from 5 to 
10 dB . As shown in (15), the value of γ  reflects the frequency of exploration. After a number 
of iterations, to ensure that the system reaches a stationary point, the value of γ  should tend to 
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zero. In the simulation, we set the value of γ  as 1/ k , where k  is the total number of 
iterations.  

6.1 Simulation Results under Binary Feedback 

A. Convergence Behavior 
1) Convergence Behavior under Homogeneous Threshold 
For this case, there are five secondary users and three channels in the system, and the threshold 
value of all the users is 9 dB . For an arbitrarily chosen user, the evolution of channel selection 
probabilities is shown in Fig. 4. Through this simulation result, it is evident that the channel 
selection probabilities converge to a pure strategy ({0,0,1}) in about 40 iterations. 
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Fig. 4. Evolution of the channel selection probability of an arbitrary secondary user under homogeneous 

threshold. 
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Fig. 5. Evolution of the number of secondary users selecting each channel under homogeneous 

threshold. 
 

Moreover, the evolution of the number of secondary users selecting each channel is shown 
in Fig. 5. There are six users and three available channels in the system, and the threshold 
value of all the users is 9 dB . It is noted that after convergence, *

1 3S = , *

2 1S = , *

3 2S =  ( iS is 
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the number of secondary users choosing channel i ), and in other words the system achieves 
the NE. 

The convergence speed versus different threshold values of SNR is studied in Fig. 6. The 
results are obtained by taking 10000 independent trials and then taking the corresponding 
expectation. It is noted that as the threshold value increases, the greater iteration times needed 
to achieve convergence. The reason is as the threshold value increases, the SNR at the receiver 
is more likely to be lower than the threshold, and hence the user cannot receive positive 
feedback to select a better channel in the next slot. Thus more time is needed to achieve 
convergence. 
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Fig. 6. The convergence behavior versus different threshold value ( N =5, M =3). 

 
2)  Convergence Behavior under Heterogeneous Thresholds 
In the following subsection, we will consider different applications existing in the CRNs 
supposing there are five users and three available channels. The threshold value of each user is 
5,7,9,10 and 12 dB  respectively. For an arbitrarily chosen user, the evolution of channel 
selection probabilities is shown in Fig. 7. The simulation result shows that the channel 
selection probabilities converge to a pure strategy ({1,0,0}) in about 30 iterations. 
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Fig. 7. Evolution of the channel selection probability of an arbitrarily secondary user under 

heterogeneous threshold. 
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The evolution of the number of secondary users selecting each channel is shown in Fig. 8. 
There are six users and three available channels in the system, and the threshold value of each 
user is 5,7,9,10,12 and 8 dB . It is noted that after convergence, *

1 1S = , *

2 2S = , *

3 3S = , the 
system achieves the NE.  
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Fig. 8. Evolution of the number of secondary users selecting each channel under heterogeneous 

threshold. 
 

The simulation results Fig. 4-Fig. 8 show that the proposed multi-agent Q-learning 
algorithm is applicable to the following two scenarios: 1) users in the CRNs have the same 
threshold value, 2) there are different applications in the system and different users have 
different SNR threshold values. 

B. Throughput Performance 
The throughput performance of the system versus the number of users is shown in Fig. 9 
assuming there are five available channels. The number of users is increased from four to 
fifteen and the threshold value of all the users is 9 dB . The results are obtained by taking 
100000 independent trials and then taking the expectation. Furthermore, the throughput 
performance of the proposed multi-agent Q-learning algorithm and random selection method 
are also compared in the figure. 
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Fig. 9. The throughput performance of the system for different number of users. 
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According to the figure, two conclusions can be drawn: (i) the achievable performance of 
both approaches increase rapidly as N  increases when the number of users is small, while it 
becomes moderate when the number of users is large. (ii) the proposed multi-agent Q-learning 
algorithm outperforms the random selection method, and what is more, the performance gap 
between the proposed multi-agent Q-learning algorithm and the random selection approach 
decreases as the number of users increases.  

The reasons are as follows: 1) the access opportunities are abundant when the number of 
users is small, which means that adding a user to the system leads to relatively significant 
performance improvement. While the access opportunities are saturated when the number of 
users is large and consequently, the performance improvement decreases. 2) when the 
proposed multi-agent Q-learning algorithm converges to a pure strategy, users are spread over 
all the channels. However, for the random selection method, some channels may be crowded 
while other channels may be not occupied by any users as users select channels randomly. 3) 
when the number of users becomes sufficiently large, the users are uniformly spread over the 
channels and hence the performance gap between the multi-agent Q-learning algorithm and 
random selection method is negligible. 
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Fig. 10. The throughput performance of the system under different threshold value. 

 
In Fig. 10, we compare the throughput performance of different channel selection 

approaches under different threshold values. It is assumed that there are five available 
channels and ten users in the system. The results are obtained by taking 100000 independent 
trials and then finding the expectation. Through the simulation results, it can be concluded that 
the proposed learning method achieves better performance when compared to the random 
selection approach. In addition, the throughput of the system decreases as the threshold value 
increases. As the SNR threshold value increases, it is more likely that the received SNR is 
lower than the threshold, which will lead to zero feedback and consequently the throughput 
will decrease. 

6.2 Simulation Results under Multiple Discrete Feedbacks 

A. Convergence Behavior 
With the help of adaptive modulation and coding, the channel transmission rate is classified 
into several states according to the instantaneous received SNR. The state classification is 
determined by the average received SNR and the target packet error rate. Applying 
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HIPERLAN/2 standard [26], the channel rate set is given by { }0,1, 2,3,6mS =  when the 

average received SNR is 5 dB  and the packet error rate is 310− . The rate is defined as the 
transmitted packets in a slot, and the threshold value is 1.303 dB  and 2.687 dB , 5.496 dB , 
26.890 dB . 

We assume there are six users and three available channels in the CRNs. The evolution of 
the number of secondary users selecting each channel is shown in Fig. 11. After convergence, 

*
1 1S = , *

2 3S =  and *
3 2S = . Through the simulation result, it can be proved that the proposed 

multi-agent Q-learning algorithm is also applicable to dynamic spectrum access with multiple 
discrete feedbacks. 
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Fig. 11. Evolution of the number of secondary users selecting each channel under multipl discrete 

feedbacks. 

B. Throughput Performance 
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Fig. 12. The throughput performance of the system for different number of users under multipl discrete 

feedbacks. 
 

The throughput performance versus the number of users is presented in Fig. 12. It is assumed 
that there are 5 available channels and the number of users increases from four to fifteen. The 
average received SNR is 5 dB  and the packet error rate is 310− . The results are obtained by 
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taking 50000 independent trials and then finding the expectation. The simulation result shows 
that the proposed multi-agent Q-learning algorithm achieves better throughput performance 
compared with the random selection. Hence it is possible to arrive at the same conclusions as 
those drawn from the result in Fig. 9. 

In Fig. 13, the throughput performance of the two different channel selection approaches 
under different average SNR is compared. It is assumed that there are five available channels 
and ten users. The error packet is 310−  and the average received SNR increases from 5 to 15 
dB . The simulation result shows that the proposed multi-agent Q-learning algorithm achieves 
better throughput performance. In addition, the average utility increases as the average 
received SNR increases, since a higher received SNR means higher feedback. 
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Fig. 13. The throughput performance of the system for different average received SNR. 
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Fig. 14. The throughput performance under binary feedback and multiple discrete feedbacks. 

 
Furthermore, we can compare the throughput performance among the following cases in 

Fig. 14: binary feedback, triple feedback, quadruple feedback and quintuple feedback. The 
threshold value of the four cases is (1.203 dB ), (1.303 dB  and 2.587 dB ), (1.303 dB  and 
2.587 dB , 5.496 dB ) and (1.303 dB  and 2.687 dB , 5.496 dB , 26.890 dB ) respectively. The 
threshold value is determined by the average received SNR and the target packet error rate. 
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The simulation result illustrates that the throughput performance under multiple discrete 
feedbacks is higher than that under binary feedback. Moreover, the throughput performance 
under quadruple feedback is the same as that under quintuple feedback. The reason is that the 
probability that the feedback equal to six is very low under the quintuple feedback as the 
threshold value is 26.890 dB . Consequently, the feedback under the quintuple feedback is the 
same as that under quadruple feedback. 

6.3 Comparison with Existing Schemes with Continuous Feedback 
In this subsection, we compare our proposed multi-agent Q-learning algorithm and the 
algorithm proposed in [5] which was originally designed for distributed channel selection with 
continuous feedback.  

We found that the gap of the throughput performance between our proposed multi-agent 
Q-learning algorithm and approach proposed in [5] is small.  However, the proposed 
multi-agent Q-learning algorithm outperforms the approach in [5] in terms of convergence 
speed. Fig. 15 and Fig. 16 show the comparison of cumulative distribution function (CDF) 
between the two algorithms under binary feedback and quintuple discrete feedback 
respectively. The results are obtained by taking 10000 independent trials. 

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Numbers of iteration for convergence*50

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n 

(C
D

F)

 

 

The algorithm proposed in [5]
Our porposed multi-agent Q-learning algorithm

 
Fig. 15. The comparison of convergence speed under binary feedback. 
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Fig. 16. The comparison of convergence speed under quintuple discrete feedback. 
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In Fig. 15, when the number of iterations is 250 about 75% of trials achieve convergence in 
our proposed multi-agent Q-learning algorithm, while only 19% of trials achieve convergence 
using the approach outlined in [5]. In Fig. 16, when the number of iteration is 500, about 85% 
of trials achieve convergence in our proposed multi-agent Q-learning algorithm, while only 
35% of trials achieve convergence using the approach given in [5]. Comparing Fig. 15 and Fig. 
16, for both binary feedback and quintuple discrete feedback, we can conclude that the 
convergence speed slows down for both algorithms, while the decrease trend of approach in [5] 
is more apparent than our algorithm. In other words, the proposed multi-agent Q-learning 
algorithm is applicable to both binary feedback and multiple discrete feedbacks. 

From the simulation results given in Fig. 15 and Fig. 16, while the algorithm presented in 
[5] can achieve convergence, there is no theoretic proof of the convergence for this algorithm 
based on discrete feedback. However in this article, rigorous proof of the convergence is given 
in Theorem 2. Furthermore, the Q-value is updated based on the discrete feedback which 
accelerates the speed of convergence. 

Some previous work has also investigated the problem of OSA using Q-learning algorithm, 
e.g., [6]. While, their work formulated OSA as a finite Markov decision process (MDP), 
whose Q-value update function is related to the state set and transition function. Since the 
MDP does not correspond to our work, it is not analyzed in this subsection. 

7. Conclusion 
In this article, distributed channel selection in opportunistic spectrum access systems with 
discrete feedback was investigated. In addition, this work also considered a realistic scenario 
with different thresholds. The interactions among the users in the time-varying environment 
was formulated as a non-cooperative game which was later proved to be a potential game. 
Then a multi-agent Q-learning algorithm was proposed in which users learn to adjust their 
channel selection strategies according to the instantaneous feedbacks. It was also proved that 
the proposed multi-agent Q-learning algorithm can converge to a Nash equilibrium with 
discrete feedback. Based on the binary feedback, multiple discrete feedbacks were also 
investigated considering both adaptive modulation and coding. The simulation results verified 
that users can adjust their channel selection strategies to pure strategy Nash equilibria 
according to the proposed multi-agent Q-learning algorithm with both binary feedback and 
multiple discrete feedbacks. Future work focusing on the theoretical analysis of the learning 
algorithm considering multiple discrete feedbacks is on-going. 
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