The Thirc! AFSS(1998). 170175

GENETIC PROGRAMMING OF MULTI-AGENT COOPERATION
STRATEGIES FOR TABLE TRANSPORT

Dong-Yeon Cho?, Byoung-Tak Zhang"

a. Dept. of Computer Engineering, Seoul National University

Sinlim-Dong, Gwanak-Ku, Seoul 151-742 Korea

Tel: +82-2-880-7302 Fax: +82-2-880-7302 E-mail: dycho@nova.snu.ac.kr
b. Dept. of Computer Engineering, Seoul National University

Sinlim-Dong, Gwanak-Ku, Seoul 151-742 Korea

Tel: +82-2-880-1833 Fax: +82-2-883-3595 E-mail: btzhang @scai snu.ac.kr

Abstract

Transporting a large table using multiple robotic agents requires at least two group behaviors of homing and herding
which are to be coordinated in a proper sequence. Existing GP methods for multi-agent learning are not practical enough to
find an optimal solution in this domain. To evolve this kind of complex cooperative behavior we use a novel method called
fitness switching. This method maintains a pool of basis fitness functions each of which corresponds to a primitive group
behavior. The basis functions are then progressively combined into more complex fitness functions to co-evolve more
complex behaviors. The performance of the presented method is compared with that of two conventional methods.

Experimental results show that coevolutionary fitness switching provides an effective mechanism for evolving complex

emergent behaviors which may not be solved by simple genetic programming.

Keywords: genetic programming, muitiagent learning, artificial life, auronomous robots, fitness switching.

1. Introduction

Genetic programming has been used to evolve
cooperative behaviors of a group of simple robotic agents.
Koza and Bennett {4, 1] used genetic programming to
evolve a common program that causes foraging of foods
by an ant colony. Haynes et al. [2] showed that programs
for solving a predator-prey problem can be generated by

genetic programming without any deep domain knowledge.

Luke et al. [6] explored various strategies for evolving
teams of agents in the Serengeti world, a simple predator-
prey enrvironment. Iba [3] studied three different breeding
strategies (homogeneous, heterogeneous, and
coevolutionay) for cooperative robot navigation.

These studies have attempted to evolve emergent
collective behaviors immediately from primitive actions.
However, more realistic complex tasks require more than
one emergent behaviors and a proper coordination of these
is essential for successful accomplishment of the task.

In this paper we study a table transportation problem,
an example of important multi-robot applications [11].
This problem requires at least two emergent behaviors, i.e.
homing and herding, to be achieved in sequence. The
robots need first to get together around the object to

transport (oming) and then transport it in team to the

destination (herding). In this task, a group of robot agents
“must” cooperate to ever achieve the goal since the table is
too big to be transported by a few robots.

A successful solution to this problem using genetic
programming requires a coordination of homing and
herding behaviors in some way. A straightforward genetic
programming method may not scale up to this problem
since the agents are engaged in a strictly coordinated
sequential task

We present in this paper some results of using a novel
method called fitness switching [13]. In fitness switching,
different parts of a genetic tree are responsible for
different behaviors and for each of the subtrees a basis
fitness function is defined. The evolution of the entire
behavior is scheduled by a fitness switch that dynamically
changes fitness types in a pool of fitness functions. The
basic idea behind this approach is that fitness functions are
a fundamental mechanism that guides the evolutionary
process. An advantage of this approach is that it is easy to
implement the progressive learning, i.e. learning easier
tasks first and then harder tasks, which is a well-proven
educational method in pedagogy.

It should be noted that our approach is different from
other heterogeneous breeding methods [6, 3] in which

different subtrees represent different agents. In the fitness

—170—

CE] (]
m oo ao]
2 popa
o
O om
&1
=2
Q o
[
coR]
2 B@ae
a
5}
a
a O @
o
a
ag
B
1}]
oo aan
a Q DOEG
a B
m
a
a
-]
a
a
a]

Fig. 1 The environment for the transpotation problem

switching method, different subtrees represent different
behaviors of a single agent which need to be coordinated.
The paper is organized as follows. Section 2 describes
the task and related work on multiagent learning. Section 3
presents the general framework for fitness switching and
its implementation methods for the evolution of complex
group behaviors using genetic programming. Section 4
shows experimental results of the presented methods.
Section 5 discusses the result and suggests further work.

2. The Task

The transportation problem we consider in this paper
is defined as follows. In an nxn grid world, a single table
and four robotic agents are placed at random positions, as
shown in Figure 1. In addition, a specific location is
designated as the destination. The goal of the robots is to
transport the table to the destination in group motion. The
robots need to move in herd since the table is too heavy
and large to be transported by single robots.

Each robor has a repertoire of actions. It can move
forward in the current direction (N, E, S, W, NE, SE, SW,
NW) or remain on the current position. The direction of
the movement can be chosen randomly to avoid collision
with obstacles or other robots. The robots have a limited
visual field of range 1 to each movable direction. A fixed
number of obstacles are placed in the grid. The robots can
recognize other robots and distinguish them from
obstacles.

Each robot i (i = 1, .., N, is equipped with a control
program A,. If A; # A, for i # j, then control programs are
said to be private. In case of public control programs, all
instances of A; are constrained to be the same A.

The robots activate A;’s in parallel to run a team trial.

Fig. 2 The framework for fitness switching

At the beginning of the trial, the robot locations are chosen
at random in the arena. They have different positions and
orientations. During a trial, the robots are granted a total of
S elementary movements. The robot is allowed to stop
in less than S, . steps if it reaches the goal. At the end of
the trial, each robot i gets a fitness value which was
measured by summing the contributions from various
factors. The goal of genetic programming is to find control
programs leading to efficiently transporting the table from
the initial position to the goal position.

3. The Method

We use genetic programming to evolve the
cooperation strategies of the transport robots. As discussed
in the introduction, conventional genetic programming is
not powerful enough to solve this problem. Thus, we have
used a novel method called fitness switching [13]. It is a
method for evolving complex behaviors with genetic
programming. The procedure is based on incremental
learning as described below (see Figure 2):

Define primitive actions for the problem domain.
2. Define a small number of micro-behaviors,
B={B, B,B,} ¢9)
that constitute the original problem-solving
behavior.
3. Define a fitness function for each micro-behavior.
This makes the pool of fitness function.
F={.fp . fi} 2
4. Design a sequence of micro-behaviors of their
combinations to achieve the target behavior:
S,=35,, V(B 3
Where t =0, ..., n and S; = {}. The corresponding
sequence of fitness function are defined as

FI=F1-l+fr=2fi)
i=t

-171—

Where t=0, ...,nand F,;=0.

5. Define the structure of a genetic program as having
s subtree immediately under the root node.

6. Apply genetic programming to evolve S, 1=1, ...,
n in sequence. For each S,, the fitness function F, is

used to evolve the first ¢ subtrees of the entire tree.

The method is called fitness switching since evolution
is guided by fitness functions switched from simpler ones
to more complex ones.

In the following, we illustrate the fitness switching
method applied to the table transportation problem. As
described in Section 2, the transportation problem can be
considered as a composition of the following cooperative
behaviors:

¢ homing

¢ herding

Thus the set of micro-behaviors is B = {B,, B,}, where
B, = homing and B, = herding. The set of fitness
functionsis F = {f}, f,}. Here f; is the fitness function for
the homing behavior to the table and the f, is the herding
behavior for transporting the table to the goal.

In the experiments we have used the following fitness
functions for f, and f,:

4
fi =Y {e,max(X,.Y,) +c,S, (5)
r=1
+¢,C, —c,M_ +K}
4
fa =2‘{cl max(X,,Y,)+c,S, (6)

r=1
+¢,C, —c M, +c;A, + K}
the definitions of the symbols used in above equations are
provided in Table 1. The target position for homing
behavior is the initial position of the table while the target
position for herding behavior is the destination of the
table.

Several implementational variants for fitness
switching are possible. One simple choice is naive
evolution in which genetic programs are initialized with
arbitrary structures which are shared for all the micro-
behaviors. In each generation, the fitness of each program
is measured as follows:

1. Measure the fitness of the whole tree by f,.

2. Measure the fitness of the whole tree by f,.

3. The fitness of the program is defined as F =f, + f,.

Naive evolution is one extreme on which most existing
GP studies are based. This method is very efficient in

memory usage since the same tree is shared by multiple

Table 1: Symbols used for fitness definition.

Symbol Description
X, x-axis distance between target and robot
Y, y-axis distance between target and robot r
S, number of steps moved by robot r
C, number of collisions made by robot r
M, distance between starting and final position

of r

A, penalty for moving away from other robots
¢ coefficient for factor i
K positive constant

behaviors. A disadvantage is that this representation is
difficult to coordinate multiple cooperative behaviors.

Another extreme of fitness switching is sequential
evolution. Here the left subtree is responsible for
homingand the right subtree for herding. The left subtrees
for homing behavior are evolved by a GP run and then the
best program for this run is used to evolve the next GP run
for evolving the herding behavior. The process is
summarized as follows:

1. Run a GP to evolve left subtrees for homing

behavior by measuring fitness by f1.

L

2. Let A, be the best individual evolved above.

3. Run another GP to evolve right subtrees for herding

L

behavior by using Ab oy and measuring the fitness

of the whole tree A by F =f, + f,.

This is another extreme in which the coordination is
hard-coded both in representation and in evolutionary
process. This approach seems the most practical in solving
tasks which can be clearly decomposed into a sequence of
independent subtasks. But most of interesting problems
that need emergent computations do not belong to this
class of problems

We choose a third option, fitness switching with
coevolution. The coevolutionary switching is similar to the
sequential evolution in that the subtrees are responsible for
different micro-behaviors. The difference lies in the fact
that fitness measures are switched within a single
generation, which has some similarity to the naive
evolution. Fitness of programs is measured at each
generation as follows:

1. Measure the fitness of the left subtree by f,.

3. Measure the fitness of the right subtree tree by f,.

3. The fitness of the program is defined as F = f; + f;.

The advantage of this method is the ability of

concurrent evolution of primitive cooperative behaviors

—~172—

Table 2 Tableau for the table transportaion problem

Prameter

Value

Terminal set

Function set

Fitness cases
Robot world

FORWARD, AVOID, RANDOM-
MOVE, TURN-TABLE, TRUN-
GOAL, STOP

IF-GOAL, IF-ROBOT, IF-TABLE,
IF-OBSTACLE, PROG2, PROG3
20 training worlds, 20 test worlds
32 by 32 grid, 64 obstacles, 1 table
to transport

Population size
Max generation
Crossover rate
Mutation rate

100
200
1.0
0.1

Max tree depth 10
Selection scheme | truncation selection with elitism

and their coordination.
Based on our previous work [12] a complexity term
was used in all experiments to penalize large trees:
F=F+BC 7
where C is the number of nodes in the tree and f is a small
constant.

4. Results

Table 2 summarizes the experimental setup for
genetic programming. The objective of a GP run is
to find a multi-robot algorithm that, when executed
by each robot in a group of 4 robots, causes efficient
table transport behavior in group.

We have used the function set consisting of six
primitives: IF-OBSTACLE, IF-ROBOT, IF-TABLE, IF-
GOAL, PROG2 and PROG3. IF-OBSTACLE and IF-
ROBOT check collisions with obstacles and other robots,
respectively. IF-TABLE and IF-GOAL are used to detect
the table and the goal position. PROG2 (PROG3)
evaluates two (three) subtrees in sequence.

The terminal set consists of six primitive actions:
FORWARD, AVOID, RANDOM-MOVE, TURN-TABLE,
TURN-GOAL and STOP. FORWARD takes one step
forward in the current direction. This movement can cause
collision. AVOID checks the surrounding region and
makes one step in the first direction that avoids the
collision. The checking takes place clockwise starting
from current direction. RANDOM-MOVE makes a
random movement in any direction. This can cause
collision. TURN-TABLE and TURN-GOAL make a
clockwise turn to the nearest direction of the table and the
destination, respectively. STOP makes no step and remains

the same position. An example of genetic program is

—173—

LS
==

Fig. 3 A genetic program for solving the table

best —
800 L werage ——
700 4
A ﬁ fa i
800 A & RS R PL A M \"r“\ r 1'4 \\5*’.')[.2“ 3 IN\YIIV'V Vn.-]
WAL Y WA T
500 ¥
]
)
a0 -
200 |
100 b
o .
1] 20 40 80 [+ 100 120 140 180 180 200

Generation

Fig. 4 Evolution of fitness values during a GP run

shown in Figure 3.

Each fitness case represents a world of 32 by 32 grid
on which there are four robots, 64 obstacles, a table to
betransported. A total of 20 training cases are used for
transportation problemevolving the programs. A total of
20 independent worlds are used for evaluating the
generalization performance of evolved programs.

Figure 4 shows the change in fitness values during a
GP run with coevolutionary fitness switching: The fitness
of a tree A is measured by F(A) = f,(A) + £,(A), where f,(A)
is the fitness for homing and f,(A) is the fitness for
herding. A rapid decrease in fitness indicates the fast
improvement in cooperative behavior.

The genetic programming with coevolutionary fitness
switching was able to learn to solve the transportation
problem for more than one environments. Figure 5 shows
the behavior of the robots to the training environments.
Shown are four cases out of 20 training cases in total.

The generality of the evolved programs was verified
by running them on test environments. Figure 6 shows the
behaviors of the robots to the test cases. Shown are also
four cases out of 20 test cases in total. Comparison of
Figures 5 and 6 suggest effectiveness of fitness switching
with coevolution as a method for evolving composite
cooperative behaviors.

The performance of genetic programs can also be

LTET

Fig. 5 Trajectory of robots running the evolved

program in the training cases

LT

Fig. 6 Trajectory of robots running the evolved

program in the test cases

measured by the number of hits: the number of times the
goal was reached. Figure 7 shows the change in the
number of hits during the run.
More generally, the hit ratio can be used as a measure
of success in evolving cooperative behavior:
- (# fitness cases with success) @)

(total number of fitness cases)

Table 3 compares the hit ratio for the three fitness
switching methods described in the previous section. It is
worth mentioning that the naive approach failed to solve

this problem. As expected the fitness switching with

L L L
120 140 1860 180 200

Generation

Fig. 7 Number of hits vs. generation

] 20 40 80 80 100 120 140 160 180 200
Generation

Fig. 8 Average number of steps vs. generation

sequential evolution, the most engineered version, was the
best in hit ratio for training. The coevolutionary switching
method was competitive to the sequential switching in hit
ratio training.

The number of steps for the robot team to move is
another important measure of performance for cooperative
behavior. Thus it is useful to define the average number of
steps, S, for a group of robots:

Negges

S = ¥ ! Y (#steps for fitness case c) ®
c=l1

cases

where N, is the number of fitness cases. In case that the
trial failed to reach the goal, the number of steps for the
fitness case was counted as the maximum number of steps
allowed for each trial.

Figure 8 shows the evolution of the average
number of steps made by four robots for 20 different
training environments. Shown are the best-of-generation
and population-average values. Table 4 compares the
performance of three different methods for fitness
switching. The values given are the average number of
steps made by a group of four robots for 20 different

environments for training and test, respectively. The table

—174 -

Table 3 Hit ratio in comparison

Hit Ratio
Method Training (20) Test (20)
Naive 0.05 (1) 0.15(3)
Sequential 0.90 (18) 0.75 (15)
Coevolution 08517 0.65 (13)

Table 4 Average number of steps in comparison

Average Number of Steps

Method | # Nodes Trainingg (20) Test (2[)0)
Naive 49 153.8 176.5
Sequential 51 539.8 394.0
Coevolution 44 516.7 588.7

also shows the size of programs evolved by each method.

5. Conclusions

We have presented a genetic programming method for
evolving composite cooperative behaviors of multiple
robotic agents for table transport. The fitness switching
method was based on the observation that, while GP is
able to evolve emergent behaviors, the evolution can be
more efficient if the program structure and sometimes the
evolution strategy is constrained to match the problem
structure.

A coevolutionary method was described that is guided
by a pool of fitness functions which are defined to reflect
to some extent the problem structure without too much
need for domain knowledge. The method of
coevolutionary fitness switching was suggested as a
particular realization of this concept.

We have experimentally shown that coevolution with
fitness switching can solve a class of tasks which can not
be efficiently solved by naive genetic programming.
Experimental results also show that, compared with the
carefully designed sequential evolution, the
coevolutionary fitness switching is competitive in training

performance and better in generalization accuracy.
Acknowledgments

This research was supported in part by the Korea
Science and Engineering Foundation (KOSEF) under
grant 96-0102-13-01-3.
References
1. EH. Bennett 111, “Automatic creation of an efficient

multi-agent architecture using genetic programming

with architecture-altering operations,” Proc. of First

—-175—

10.

12.

13.

Int. Conf. on Genetic Programming, J.R. Koza et al.
(eds.) Cambridge, MA: MIT press, 30-38, 1996.

T. Haynes, S. Sen, D. Schoenfeld, and R.
Wainwright, “Evolving a team,” Proc. AAAI-95 Fall
Symposium on Genetic Programming, 23-30, AAAI
Press, 1995.

H. Iba, “Multi-agent learning for a robot navigation
task by genetic programming,” Proc. of Second Int.
Conf. on Genetic Programming, Morgan Kaufmann,
195-200, 1997.

J. R. Koza, “Genetic Programming: On the
Programming of Computers by Means of Natural
Selection,” Cambridge, MA: MIT Press, 1992.

C. R. Kube and H. Zhang, “Collective robotics:
From social insects to robots,” Adaptive Behavior,
2(2), 189-218, 1994.

S. Luke and L. Spector, “Evolving teamwork and
coordination with genetic programming,” Proc. 1996
Genetic Programming Conf., JR. Koza et al. (eds.)
Cambridge, MA: MIT Press, 150-156, 1996.

M.J. Mataric, “Learning in multi-robot systems,”
Adaptation and Learning in Mulri-Agent Systems, G.
Weiss and S. Sen (eds.) LNCS 1042, Springer, 150-
156, 1996.

L. E. Parker, “The effect of action recognition and
robot awareness in cooperative robotic teams,”
IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 212-219, 1995.

C. Version and L. M. Gambardella, “Learning real
team solutions,” Distributed Artificial Intelligence
Meets Machine Learning, 40-61, 1997.

GM. Wemer and M.G. Dyer, “Evolution of
herdingbehavior in artificial animals,” Proc. Second
Int. Conf. on Simulation of Adaptive Behavior, 393-
399, 1993.

B.T. Zhang and Y.J. Hong, “A multinet neural
collective robotic
Conf. on Neural
Information Processing, Springer, 971-974, 1997.
B.T. Zhang, P. Ohm, and H. Miihlenbein,
“Evolutionary induction of sparse neural trees,”
Evolutionary Computation, 5(2), 213-236, 1997.

B.T. Zhang and D.Y. Cho, “Fitness switching:

Evolving complex group behaviors using genetic

architecture for evolving

intelligence,” Proc. of Int.

programming,” to appear in Proc. 1998 Int. Conf. on
Genetic Programming, Wisconsin, Madison, July
1998.

