• Title/Summary/Keyword: Content-based Image retrieval

Search Result 448, Processing Time 0.024 seconds

Design of a Content-based Multimedia Information Retrieval System (내용 기반 멀티미디어 정보 검색 시스템의 설계)

  • 박민식;유기형
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.8
    • /
    • pp.1117-1122
    • /
    • 2001
  • Recently, issues on the internet searching of image information through various multimedia databases have drawn an tremendous attention and several researches on image information retrieval methods are on progress. By incorporating wavelet transform and correlation matrixes, we propose a novel and highly efficient feature vector extraction algorithm that has an capability of a robust similarity matching. The simulation results have yielded a faster and highly accurate candidate image retrieval performance in comparison to those of the conventional algorithms. Such an improved performance can be obtained because the used feature vectors were compressed to 256:1 while the correlation matrixes are incorporated to provide a fuel information for the better matching.

  • PDF

Content- based Image Retrieval using Fuzzy Integral (퍼지 적분을 이용한 내용기반 영상 검색)

  • Kim, Dong-Woo;Song, Young-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.203-208
    • /
    • 2006
  • The management of image information settles as an important field with the advent of multimedia age and we are in need of the effective retrieval method to manage systematically image information. This paper has complemented the problem caused by the absence of space information that is a weak point of the existing color histogram method by assigning regions of features, and raised accuracy by adding texture and shape information. And existing methods using multiple features have problems that the retrieval process is embarrassed because each weight is set up manually. So we has solved these problems by assignment of weight applying fuzzy integral. As a result of experimenting with 1,000 color images, the proposed method showed better precision and recall than the existing method.

EEIRI: Efficient Encrypted Image Retrieval in IoT-Cloud

  • Abduljabbar, Zaid Ameen;Ibrahim, Ayad;Hussain, Mohammed Abdulridha;Hussien, Zaid Alaa;Al Sibahee, Mustafa A.;Lu, Songfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5692-5716
    • /
    • 2019
  • One of the best means to safeguard the confidentiality, security, and privacy of an image within the IoT-Cloud is through encryption. However, looking through encrypted data is a difficult process. Several techniques for searching encrypted data have been devised, but certain security solutions may not be used in IoT-Cloud because such solutions are not lightweight. We propose a lightweight scheme that can perform a content-based search of encrypted images, namely EEIRI. In this scheme, the images are represented using local features. We develop and validate a secure scheme for measuring the Euclidean distance between two descriptor sets. To improve the search efficiency, we employ the k-means clustering technique to construct a searchable tree-based index. Our index construction process ensures the privacy of the stored data and search requests. When compared with more familiar techniques of searching images over plaintexts, EEIRI is considered to be more efficient, demonstrating a higher search cost of 7% and a decrease in search accuracy of 1.7%. Numerous empirical investigations are carried out in relation to real image collections so as to evidence our work.

MPEG-7 Homogeneous Texture Descriptor

  • Ro, Yong-Man;Kim, Mun-Churl;Kang, Ho-Kyung;Manjunath, B.S.;Kim, Jin-Woong
    • ETRI Journal
    • /
    • v.23 no.2
    • /
    • pp.41-51
    • /
    • 2001
  • MPEG-7 standardization work has started with the aims of providing fundamental tools for describing multimedia contents. MPEG-7 defines the syntax and semantics of descriptors and description schemes so that they may be used as fundamental tools for multimedia content description. In this paper, we introduce a texture based image description and retrieval method, which is adopted as the homogeneous texture descriptor in the visual part of the MPEG-7 final committee draft. The current MPEG-7 homogeneous texture descriptor consists of the mean, the standard deviation value of an image, energy, and energy deviation values of Fourier transform of the image. These are extracted from partitioned frequency channels based on the human visual system (HVS). For reliable extraction of the texture descriptor, Radon transformation is employed. This is suitable for HVS behavior. We also introduce various matching methods; for example, intensity-invariant, rotation-invariant and/or scale-invariant matching. This technique retrieves relevant texture images when the user gives a querying texture image. In order to show the promising performance of the texture descriptor, we take the experimental results with the MPEG-7 test sets. Experimental results show that the MPEG-7 texture descriptor gives an efficient and effective retrieval rate. Furthermore, it gives fast feature extraction time for constructing the texture descriptor.

  • PDF

A Combined Hough Transform based Edge Detection and Region Growing Method for Region Extraction (영역 추출을 위한 Hough 변환 기반 에지 검출과 영역 확장을 통합한 방법)

  • N.T.B., Nguyen;Kim, Yong-Kwon;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.263-279
    • /
    • 2009
  • Shape features in a content-based image retrieval (CBIR) system are divided into two classes: contour-based and region-based. Contour-based shape features are simple but they are not as efficient as region-based shape features. Most systems using the region-based shape feature have to extract the region firs t. The prior works on region-based systems still have shortcomings. They are complex to implement, particularly with respect to region extraction, and do not sufficiently use the spatial relationship between regions in the distance model In this paper, a region extraction method that is the combination of an edge-based method and a region growing method is proposed to accurately extract regions inside an object. Edges inside an object are accurately detected based on the Canny edge detector and the Hough transform. And the modified Integrated Region Matching (IRM) scheme which includes the adjacency relationship of regions is also proposed. It is used to compute the distance between images for the similarity search using shape features. The experimental results show the effectiveness of our region extraction method as well as the modified IRM. In comparison with other works, it is shown that the new region extraction method outperforms others.

Personalized Item Recommendation using Image-based Filtering (이미지 기반 필터링을 이용한 개인화 아이템 추천)

  • Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • Due to the development of ubiquitous computing, a wide variety of information is being produced and distributed rapidly in digital form. In this excess of information, it is not easy for users to search and find their desired information in short time. In this paper, we propose the personalized item recommendation using the image based filtering. This research uses the image based filtering which is extracting the feature from the image data that a user is interested in, in order to improve the superficial problem of content analysis. We evaluate the performance of the proposed method and it is compared with the performance of previous studies of the content based filtering and the collaborative filtering in the MovieLens dataset. And the results have shown that the proposed method significantly outperforms the previous methods.

Histogram Matching Algorithm for Content-Based Dnage Retrieval (내용기반 영상검색을 위한 히스토그램 매칭 알고리즘)

  • You, Kang-Soo;Yoo, Gi-Hyoung;Kwak, Hoon-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.45-52
    • /
    • 2008
  • In this paper, we describe the Perceptually Weighted Histogram(PWH) and the Gaussian Weighted Histogram Intersection(GWHI) algorithms. These algorithms are able to provide positive results in image retrieval. But these histogram methods alter the histogram of an image by using particular lighting conditions. Even two pictures with little differences in lighting are not easily matched. Therefore, we propose that the Histogram Matching Algorithm(HMA) is able to overcome the problem of an image being changed by the intensity or color in the image retrieval. The proposed algorithm is insensitive to changes in the lighting. From the experiment results, the proposed algorithm can achieve up to 32% and up to 30% more recall than the PWH and GWHI algorithms, respectively. Also, it can achieve up to 38% and up to 34% more precision than PWH and GWHI, respectively Therefore, with our experiments, we are able to show that the proposed algorithm shows limited variation to changes in lighting.

Implementation of a Video Retrieval System Using Annotation and Comparison Area Learning of Key-Frames (키 프레임의 주석과 비교 영역 학습을 이용한 비디오 검색 시스템의 구현)

  • Lee Keun-Wang;Kim Hee-Sook;Lee Jong-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.2
    • /
    • pp.269-278
    • /
    • 2005
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantics-based retrieval method can be available for various queries of users. In this paper, we propose a video retrieval system which support semantics retrieval of various users for massive video data by user's keywords and comparison area learning based on automatic agent. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user becomes a query image and searches the most similar key frame through color histogram comparison and comparison area learning method that proposed. From experiment, the designed and implemented system showed high precision ratio in performance assessment more than 93 percents.

  • PDF

Machine Learning Based Automatic Categorization Model for Text Lines in Invoice Documents

  • Shin, Hyun-Kyung
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1786-1797
    • /
    • 2010
  • Automatic understanding of contents in document image is a very hard problem due to involvement with mathematically challenging problems originated mainly from the over-determined system induced by document segmentation process. In both academic and industrial areas, there have been incessant and various efforts to improve core parts of content retrieval technologies by the means of separating out segmentation related issues using semi-structured document, e.g., invoice,. In this paper we proposed classification models for text lines on invoice document in which text lines were clustered into the five categories in accordance with their contents: purchase order header, invoice header, summary header, surcharge header, purchase items. Our investigation was concentrated on the performance of machine learning based models in aspect of linear-discriminant-analysis (LDA) and non-LDA (logic based). In the group of LDA, na$\"{\i}$ve baysian, k-nearest neighbor, and SVM were used, in the group of non LDA, decision tree, random forest, and boost were used. We described the details of feature vector construction and the selection processes of the model and the parameter including training and validation. We also presented the experimental results of comparison on training/classification error levels for the models employed.

The 2-Phase Image Retrieval Technique using The Color and Shape Information (색상과 모양 정보를 이용한 2단계 영상 검색 기법)

  • 김봉기;오해석
    • Journal of Korea Multimedia Society
    • /
    • v.1 no.2
    • /
    • pp.173-182
    • /
    • 1998
  • As a result of remarkable developments in multimedia technology, the image database system that can efficiently retrieve image data becomes a core technology of information-oriented society. In this paper, we proposed the 2-phase Image Retrieval System considering both color and shape information as the method of image features extraction for content-based image data retrieval. At the first level, to get color information, with improving and extending the indexing method using color distribution characteristic suggested by Striker et al., i.e. the indexing method considering local color distribution characteristics, the system roughly classifies images through the improved method. At the second level, the system finally retrieves the most similar image from the image queried by the user using the shape information about the image groups classified at the first level. To extract the shape information, we use the Improved Moment Invariants (IMI) that manipulates only the pixels on the edges of objects in order to overcome two main problems of the existing Moment Invariant methods large amount of processing and rotation sensitiveness which can frequently be seen in the Directive Histogram Intersection technique suggested by Jain et al. Experiments have been conducted on 300 automobile images. And we could obtain the more improved results through the comparative test with other methods.

  • PDF