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MPEG-7 standardization work has started with the aims 
of providing fundamental tools for describing multimedia 
contents. MPEG-7 defines the syntax and semantics of de-
scriptors and description schemes so that they may be used  
as fundamental tools for multimedia content description. 
In this paper, we introduce a texture based image descrip-
tion and retrieval method, which is adopted as the homo-
geneous texture descriptor in the visual part of the MPEG-
7 final committee draft. The current MPEG-7 homogene-
ous texture descriptor consists of the mean, the standard 
deviation value of an image, energy, and energy deviation 
values of Fourier transform of the image. These are ex-
tracted from partitioned frequency channels based on the 
human visual system (HVS). For reliable extraction of the 
texture descriptor, Radon transformation is employed. 
This is suitable for HVS behavior. We also introduce vari-
ous matching methods; for example, intensity-invariant, 
rotation-invariant and/or scale-invariant matching. This 
technique retrieves relevant texture images when the user 
gives a querying texture image. In order to show the prom-
ising performance of the texture descriptor, we take the ex-
perimental results with the MPEG-7 test sets. Experimen-
tal results show that the MPEG-7 texture descriptor gives 
an efficient and effective retrieval rate. Furthermore, it 
gives fast feature extraction time for constructing the tex-
ture descriptor. 
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I. INTRODUCTION 

Recently, there has been an overwhelming increase in the 
amount of digital multimedia information going over the Inter-
net and broadcasting systems. And users need new method to 
organize, manipulate and transmit the data they want.  

The current technologies for representing multimedia in the 
forms of texts have many limitations. They cannot efficiently 
represent and retrieve various types of multimedia contents. 
Also, international standards such as JPEG, MPEG-1, MPEG-2 
and MPEG-4 have been developed only for compression of 
data. These standards are created for efficient storage and trans-
mission, not for the representation of the contents. 

At the 36th MPEG Chicago meeting in September 1996, 
MPEG members first discussed an “Audiovisual Content De-
scription Interface” for efficient representation of multimedia 
information. They wanted to make an international standard 
that became MPEG-7. Its official name is “Multimedia Con-
tent Description Interface” of ISO/IEC JTC1 SC29/WG11 and 
work began at the 37th MPEG Maceio meeting in November 
1996. MPEG-7 standardization reached the final committee 
draft (FCD) level at the MPEG Singapore meeting in March 
2001. This is a technically stable stage. 

MPEG-7 standard specification defines the syntax and se-
mantics of describing the multimedia contents and consists of 7 
parts: Systems, Description Definition Language (DDL), Vis-
ual descriptor, Audio descriptor, Multimedia Description 
schemes (MDS), Reference software, and Conformance testing. 

In the visual part of the MPEG-7 standard, visual descriptors 
are specified as normative descriptors, basic descriptors, and 
descriptors for localization. Normative descriptor describes the 
color, shape, texture and motion features of visual data [1], [2]. 

In this paper, we introduce a texture-based image description 
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and retrieval method which we proposed and adopted as the 
Homogeneous texture descriptor in the Visual part of the 
MPEG-7 FCD. Our proposal was adopted. 

The texture information of an image is a fundamental visual 
feature, which has been studied during the last decade to ana-
lyze images in the areas of medical imaging and satellite imag-
ing, etc. [3]-[5]. This contains structureness, regularity, direc-
tionality and roughness of images, which are important proper-
ties of the content-based indexing of the image [6].   

Previous works such as probability distribution of pixels [3], 
directional filtering [3] and Markov random field have been 
studied. More recently, spatial Gabor filters and wavelet trans-
formation have been studied to extract texture information. In  
[5], Gabor, Pyramid structured Wavelet Transform (PWT), 
Tree structured Wavelet Transform (TWT), and Multiresolu-
tion Simultaneous Autoregressive Model (MRSAR) methods 
have been compared. In that paper, Gabor and MRSAR meth-
ods show good performance of relevant texture image retrieval. 
However, the methods require high computational complexity 
to extract the texture information. The MPEG-7 homogeneous 
texture descriptor we invented is efficient not only for comput-
ing texture features but also in representing texture information. 
Through the core experiments in the MPEG-7 Visual group, 
the MPEG-7 homogeneous texture descriptor that we describe 
in this paper had been severely tested and compared with other 
proposed texture descriptors in terms of computation complex-
ity and retrieval accuracy. It outperformed the other by showing 
fast feature extraction and compact representation of texture in-
formation. It provided higher retrieval accuracy for the testing 
data sets. Therefore, the homogeneous texture descriptor de-
scribed in this paper was selected as the normative MPEG-7 
homogeneous texture descriptor in the Visual part of the 
MPEG-7 final committee draft [11]-[14]. 

In this paper, we present technical details of the MPEG-7 
homogeneous texture descriptor and its feature extraction 
method. In addition to the feature extraction method, similarity 
measuring criteria are presented for rotation-, scale- and inten-
sity-invariant matchings [15]-[18].   

The homogeneous texture descriptor in this paper consists of 
the mean and standard deviation values of an image. It also in-
cludes the energy and energy deviation values of the Fourier 
transform of the image. In order to explain the texture represen-
tation based on energy and energy deviation features, the tex-
ture feature extraction is explained in Section II . Texture index-
ing and retrieval algorithms are then presented in Section III. 
Section III also addresses various image matching criteria for 
intensity-, rotation- and/or scale-invariant matching in retrieval. 
In Section IV, the experimental results are provided for the 
MPEG-7 data set of the texture experiment. 

II. TEXTURE DESCRIPTOR EXTRACTION 
ALGORITHM FOR THE MPEG-7 HOMOGE-
NEOUS TEXTURE DESCRIPTOR 

1. Human Visual System for the Texture Descriptor 

Recently, texture-featuring and description techniques based 
on the HVS have been proposed [4]. Texture featuring based 
on the HVS corresponds well to some results from psycho-
physical experiments. In these experiments, the response of the 
visual cortex is turned to a band-limited portion of the fre-
quency domain. The human brain decomposes the spectra into 
perceptual channels that are bands in spatial frequency [5], [7]. 
For texture featuring, the best sub-band representation of HVS 
is a division of the spatial frequency domain in octave-bands 
(4~5 divisions) along the radial direction and in equal-width 
angles along the angular direction. These sub-bands are sym-
metrical with respect to the origin of the Polar coordinate. In 
this section, a frequency layout is designed. The frequency lay-
out allows extracted texture information to be matched with   
human perception system. The frequency layout consists of 
sub-bands. In these bands, the texture descriptor components 
such as energy and energy deviation are extracted. 

According to the HVS properties mentioned above, the sub-
bands are designed by dividing the frequency domain to com-
pute texture feature values. The frequency space from which 
the texture descriptor in the image is extracted is partitioned in 
equal angles of 30 degrees along the angular direction and in 
octave division along the radial direction. The sub-bands in the 
frequency domain are called feature channels indicated as iC  
in Fig. 1. The frequency space is therefore partitioned into 30 
feature channels as shown in Fig. 1. In the normalized fre-
quency space )10( ≤≤ ω , the normalized frequency ω  is 
given by maxΩΩ=ω . maxΩ  is the maximum frequency 
value of the image. The center frequencies of the feature chan-
nels are spaced equally in 30 degrees along the angular direc-
tion such as rr ×°= 30θ . Here r is an angular index with 

}5,4,3,2,1,0{∈r . The angular width of all feature channels 
is 30 degree. In the radial direction, the center frequencies of 
the feature channels are spaced with octave scale such as 

{ }4,3,2,1,0 ,20 ∈⋅= − ss
s ωω  where s is a radial index and 
0ω  is the highest center frequency specified by 3/4. The oc-

tave bandwidth of the feature channels in the radial direction is 
written as { }4,3,2,1,0 ,20 ∈⋅= − sBB s

s  where 0B is the 
largest bandwidth specified by 1/2. 

Figure 1 shows the two-dimensional (2D) frequency layout 
configured by the above division scheme. As shown in Fig. 1, 
each partitioned region corresponds to a band-limited portion 
of the frequency domain that is the response of the visual cor-
tex in the HVS. Therefore, the region can be denoted as a 
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channel to transfer the response of the visual cortex. The chan-
nels located in the low frequency areas are of smaller sizes 
while those of the high frequency areas are of larger sizes. This 
corresponds to the human vision that is more sensitive to the 
change of low frequency area. Also, note that half of the entire 
frequency space is used because images are assumed to be of 
real value. 
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Fig. 1. Frequency region division with HVS filter. 
 

2. Data Sampling in Feature Channel 

As shown in Fig. 1, the channel layout in the spatial fre-
quency domain is center-symmetrical. Since the partitioned 
frequency regions are relatively small compared with those in 
the high frequency regions in the Cartesian coordinate system, 
the frequency samples are sparse in the low frequency regions 
where the texture information is insufficient. In order to avoid 
this, we employ Radon transform for images, which allows 
Fourier transform of image in Cartesian to be represented in the 
Polar coordinate system. Using the Radon transformation, 2D 
image can be transformed to one-dimensional (1D) projection 
data, i.e., Cartesian space (x, y) will be mapped to Radon space 
(R, θ ) as shown in Fig. 2.  

 The line integral along the line L(R, θ ) at angle θ in coun-
terclockwise direction from y-axis and at a distance R from the 
origin can be written as  

∫=
),(

),()(
θθ RL

dlyxfRp  

∫ ∫
∞

∞−

∞

∞−
−+= dxdyRyxyxf )sincos(),( θθδ ,     (1) 

where ( )yxf ,  is an image function, R is projection axis and 
( )⋅δ  is delta function. The function )(Rpθ is a projection, 

since it collapses a 2D image to a 1D projection for each angle. 
The complete collection of line integrals is called the Radon 
transform of ( )yxf ,  and also called the Sinogram. The fre-
quency properties in Radon transformation can be explained by 

“central slice theorem” in which the 1D Fourier transform of a 
projection of image at angle θ equals the slice at angle θ 
through the 2D Fourier transform of that image (see Fig. 3). 
 

Fig. 2. Radon transform scheme. Image f(x,y) is transformed to
)(Rpθ  in Radon space (R, θ). 
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Fig. 3. Relationship between sinogram and 2-dimensional fourier
domain. 
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One-dimensional Fourier transform of a projection can be 
written as 

,)sincos(2exp[),(

)2exp()(

dxdyyxjyxf

dRRjRp

θθπω

ωπθ

+−=

−

∫∫
∫    (2) 

where 22
yx ωωω +=  and ( )xy ωωθ 1tan−= . 

The Radon transform is suitable for the HVS since each cen-
tral slice in Fourier domain is fit to the data representation in 
the HVS frequency layout mentioned previously. Data acquisi-
tion in the HVS-based frequency layout is done with polar-
oriented sampling scheme. 
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Figure 4 shows a sampling grid structure of a Polar fre-
quency domain after the Radon transform followed by its Fou-
rier transform. As shown in the figure, sampling density is 
dense in the low and middle frequency areas while sparse in 
the high frequency area. This property corresponds to the hu-
man visual properties such that the human vision is more sensi-
tive in the low frequency area than in the high frequency area. 
This property supports that the Radon transformation of image 
is suitable to the HVS [15]. 
 

Fig. 4. Sampling grid of a Polar frequency domain after the Radon
transform followed by Fourier transform. 
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In signal processing perspective, the frequency layout in Fig. 

1 is actually realized with a set of ideal filter banks that have 
abrupt channel boundaries. In order to relax the sharpness of 
the pass band edges of the ideal filters between channels, Ga-
bor filter banks are instead used to construct the frequency lay-
out. By applying the Gabor filter banks, the channels are over-
lapped so that the channels can affect neighbor channels each  
other (each other is redundant) at the boundary areas. The Ga-
bor function defined for Gabor filter banks is written as  
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where ),(, θωrsPG  is Gabor function at s-th radial index 
and r-th angular index. 

sωσ and 
rθσ  are the standard devia-

tions of the Gabor function in the radial direction and the angu-
lar direction, respectively. The standard deviations of the Gabor 
function are determined by touching the Gabor function with 
its neighbor functions at half the maximum (1/2) in both radial 
and angular directions. Figure 5 shows the Gabor filters on top 
of the frequency layout, which are 6 partitions in the angular di- 

Fig. 5. 5×6 Gabor filters in polar coordinate system. 
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rection and 5 partitions in the radial direction. 

For the frequency layout shown in Fig. 1, 
rθσ is a constant 

value of 2ln2/15o  in the angular direction. In the radial 
direction, 

sωσ is dependent on the octave bandwidth and is 
written as 

 
2ln22

sB
s

=ωσ .                (4) 

Tables 1 and 2 show parameters in the feature channels and 
the Gabor functions. 

 

Table 1. Parameters of octave band in the radial direction. 
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Table 2. Parameters of angular band in the angular direction. 
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3. MPEG-7 Homogeneous Texture Descriptor 

To extract the texture feature values, we take the Radon 
transform on an image and subsequent 1D Fourier transform 
on the data. Then, we can obtain a central slice of ( )θω,F  in 
2D frequency domain. The texture descriptor consists of fea-
ture values extracted from each channel shown in Fig. 1. In this 
paper, the texture descriptor components are the first and sec-
ond moments of energy in channels, i.e., energies and energy 
deviations. The energies and energy deviations that constitute 
the texture descriptor are written as [ ]3021 ,,, eee K  and 
[ ]3021 ,,, ddd K , respectively. Here the indexes from 1 to 30 
indicate the feature channel numbers. 

Based on the frequency layout (partitioned frequency do-
main) and the Gabor functions, the energy ie  of the i-th fea-
ture channel is defined as the log-scaled sum of the squares of 
Gabor-filtered Fourier transform coefficients of an image: 

 ]1log[ ii pe += ,                (5) 

where 

 ∑ ∑
+= +=

⋅⋅=
1

0

360

0

2
, )],(),([ 

ω θ

θωωθω
o

o

FGp rsPi ,     (6) 

where ω  is Jacobian term between Cartesian and Polar fre-
quency coordinates and can be written as 22

yx ωωω += . 
( )θω,F  is Fourier transform of the image ( )yxf , . The 

summation is taken over the entire frequency domain except 
the DC component. Note that 16 ++×= rsi  where s  is 
the radial index and r is the radial index. The energy deviation 

id  of the i-th feature channel is defined as the log-scaled stan-
dard deviation of the squares of Gabor-filtered Fourier trans-
form coefficients of the image: 

 ]1log[ ii qd +=                 (7) 

where 
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Further, brightness information of texture (mean denoted by 
DCf ) and standard deviation ( SDf ) of the entire image pixels 

are added as the texture feature values in the texture descriptor. 
Finally, the image intensity average DCf , standard deviation 

SDf , energies ie , and energy deviations id  of the channels 
constitute the homogeneous texture descriptor ( )TD in the or-
der as follows: 

 [ ]3021 ,,,,, eeeffTD SDDC K=         (9) 

at the base layer, and 

 [ ]30213021 ,,,,,,,,, dddeeeffTD SDDC KK=   (10) 

at the enhancement layer. 
The texture descriptor can be represented at two different 

layers: base layer and enhancement layer. The texture descrip-
tor only consists of DCf , SDf , and 30 energy values ( )ie  of 
the Fourier transform of the image. In the enhancement layer, 
the texture descriptor (additionally or) adds 30 (or additional) 
energy deviation values of the Fourier transform of the image 
in the texture descriptor vector. The layering scheme of the tex-
ture descriptor provides scalability of representing image tex-
ture depending upon applications. For the delivery of limited 
bandwidths, only texture descriptor components at the base 
layer may be transmitted. Also, fast matching can be performed 
at the base layer by satisfying retrieval accuracy. 

4. Quantization of Texture Descriptor 

In this paper, the quantization levels of the texture descriptor 
values set to 256. Eight bits are assigned and used for linear 
quantization of each descriptor value. The linear quantization 
used in the paper is written as 

min
minmax

minmax

min

_
_ βββ

ββ
β

+−×







×

−
−

=
levelq

levelq
D

D nonquant
quant

(11)

 

where Dquant is a quantized descriptor value, Dnonquant is the 
value of the feature, and maxβ  and minβ  are the maximum 
and minimum values of features in the database. Note that 
q_level is set to 255. 

After the quantization, each feature has 1 byte in size. With 
many MPEG-7 core experiments, 1 byte was good enough not 
to lose the texture information. Further, an entropy coding is 
possible to reduce the bits more. But, this can be considered for 
coding efficiency in further work. Total texture descriptor 
length is therefore reduced to 32 bytes for base layer and 62 
bytes for the enhancement layer. 

III. RETRIEVAL ALGORITHM FOR THE TEX-
TURE DESCRIPTOR 

1. Similarity Measurement 

To retrieve similar texture images for a query, a matching 
procedure should be performed. The matching procedure is as 
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follows. First, Radon transform of querying image is per-
formed so that 1D-projection signals are obtained. Using “cen-
tral slice theorem”, frequency data in the polar space are ob-
tained. For the texture descriptor, energy and deviation men-
tioned in the previous section are calculated. Then, the similar-
ity between a querying image and images in the database is 
measured. The feature of a querying image i is denoted by 

iTD  while the feature of an image j in the database by jTD . 
The similarity measured by calculating the distance between 
the two feature vectors is as follows: 

 
,

)(
)]()()[(

),( distance),(

∑
−

=

=

k

ji

ji

k
kTDkTDkw

TDTDjid

α
        (12) 

where ( )kw  is the weighting factor of k-th descriptor value. 
The normalization values )(kα are standard deviations of tex-
ture descriptor values for a reference database. (During MPEG-
7 core experiments, T1 dataset was used as reference database). 
The weighting parameter ( )kw  and the normalization value 

)(kα  are calculated in advance so that they are independent 
on the database. These values could be obtained a priori at the 
beginning of establishing the database. 

2. Intensity-Invariant Matching 

For the intensity invariance that is usually required for most 
applications, DCf  is eliminated from the feature vector when 
the similarity measurement is performed.  

3. Scale-Invariant Matching 

 For a given querying image, querying image is zoomed in 
and out with N different zooming factors. The distance ( )jid ,  
between the querying image i and the image j indexed in data-
base is obtained by 

 ))(,|)(( distance),,( kTDkTDnjid jni=       (13) 

 N}  to1 | ),,({ of minimum ),( == nnjidjid    (14) 

where N is the number of scaled (zoom-in and zoom-out) ver-
sions of the querying feature. N is usually 3 so for example, the 
original and two scaled versions of the querying image are 
30% zoom-in and 30% zoom-out. One can use different zoom-
in and zoom-out. 

4. Rotation-Invariant Matching 

 Since the frequency space division for the texture descriptor 
is made in the polar domain as shown in Fig. 2, the texture de-
scriptor of a rotated image is an angular-shifted version of the 

original image. By using the rotational property, we propose ro-
tation invariant similarity matching method. We first measure 
the distance between texture descriptor vectors in the database 
and a querying texture descriptor vector by shifting the query-
ing texture vector in the angular direction such as 

 ))(,|)(( distance),,( kTDkTDmjid jmi φφ =      (15) 

where φ = 30 degrees. Then, for rotation invariant descriptor, 
distance is calculated as 

 6}  to1 | ),,({ of minimum ),( == mmjidjid φ .  (16) 

5. Layered Texture Descriptor 

For an efficient storage or transmission, 62 features can be 
assigned with priority. Namely, with limited storage or band-
width, the texture descriptor can be reduced without degrading 
retrieval accuracy significantly. Especially, in wireless Internet 
which has poor network environment, only a part of the texture 
descriptor components could be transmitted to the MPEG-7 
database. In this case, the entire texture descriptor components 
are not used for the content-based indexing. To meet the above 
requirements, the layered configuration of the texture descrip-
tor is helpful for the better retrieval performance. The texture 
descriptor is layered as follows: 

 layertenhancemenlayerbase TDTDTD   −− +=      (17) 

where layerbaseTD  −  is the texture descriptor at the base layer , 
which is represented with the first and second moments of the 
image pixels and channel energy ( )ie  as  

 [ ].,,,,, 3021
 eeeffTD SDDC
layerbase K=−      (18) 

layertenhancemenTD  −  is an extended texture descriptor at the base 
layer to enhance the retrieval efficiency, that is, it uses full fea-
ture values in the descriptor. It can be written as 

[ ]30213021 ,,,,,,,,, dddeeeffTD SDDC
layertenhancemen KK=− . 

(19)
 

IV. MEASUREMENT OF RETRIEVAL 
PERFORMANCE 

To verify the performance of the texture descriptor men-
tioned above, experiments have been performed with the test 
data sets for the homogeneous texture descriptor in order to 
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measure feature extraction time and retrieval accuracy. Re-
trieval performance of the texture descriptor is measured by re-
trieval rate (RR) which is a ratio between the number of rele-
vant images and the number of ground truth image for a given 
querying image. Similar images, which are of the same number 
of the ground truth, are selected by measuring distance from 
the querying image. The relevant images are those belonging to 
the ground-truth images among the similar images. The RR can 
be written as 

 
truthgroundof

imagesretrievedrelevantofRR
#

#=       (20) 

The average retrieval rate for a data set (AVRR) is, therefore, 
denoted by 

 queryofnumber
RR

AVRR
queryofnumber

i i
  

][   

1∑ ==    (21) 

The MPEG-7 test data sets for the texture descriptor have 7 
different kinds of test data sets, which are T1, T2, T3, T4, T5, 
T6, and T7 data sets. The following subsections explain 
MPEG-7 test data sets used in the core experiments of the ho-
mogeneous texture descriptor in detail. 

1. T1 Data Set 

T1 data set contains texture pattern images which have been 
used popularly as a test image set for the texture experiments in 
many literatures. It consists of 1856 images with matrix size of 
128×128. 1856 images are made from 116 Brodatz images 
with matrix size of 512×512. Each Brodatz image with matrix 
size of 512×512 is divided into 16 non-overlapped partitions, 
i.e., 16 images with matrix size of 128×128. In the T1 data set, 
one image has 15 ground truths since 16 images are generated 
from one Brodatz pattern. Therefore, the relevant images in 
(20) belong to the ground truth images as well as the first 15 re-
trieved images having minimum distance. The querying im-
ages for T2 data set are the original patterns. So the number of 
query in (20) is 116. Figure 6 shows an example of the retrieval 
by a querying image with the T1 data set. As shown in the fig-
ure, an image at top-left is the query and remaining 15 images 
are retrieved ones. The right side of the querying image has the 
smallest distance value.  

2. T2 Data Set 

T2 data set consists of real patterns taken from outdoor and 
indoor scenes. It consists of 832 images with size of 128×128. 
Like the T1 data set, 832 images in T2 data set are made from 
52 images with matrix size of 512×512 such that an image of 

matrix size of 512×512 is divided into 16 non-overlapped parti-
tions. In the T2 data set, one image has 15 ground truths and 
the number of querying images is 52 images. The relevant im-
ages are ground truth images which belong to the first 15 im-
ages with minimum distance. Figure 7 shows one example of 
the retrieval by a querying image with the T2 data set. 
 

 

Fig. 6. An example of retrieved images in T1 data set. The upper-
left image is a query image. The other 15 images are
retrieved images for the query.  

 

 

Fig. 7. An example of retrieved images in T2 data set. The upper-
left image is a query image. The other 15 images are
retrieved images for the query.  

3. T3 Data Set 

T3 data set is the rotated version of the T1 and T2 data sets. 
Fifty five original images with matrix size of 512×512 are 
taken from the T1 and T2 data sets such that 30 patterns are 
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from the T1 data set and 25 patterns from the T2 data set. Then, 
the 55 images are rotated by 10, 15, 20, 30, 40, 50, 70, 75, 80, 
100, 110, 130, 135 140, 160, and 170 degrees. Finally, the T3 
data set is constructed by taking 128×128 size image at arbi-
trary position from the rotated images. So the total number of 
image in the T3 data set is 880. To evaluate the performance 
with the T3 data set, RR and AVRR are measured. The number 
of ground truth is 16 and the querying images are 55 images 
which are rotated by 30 degrees. Figure 8 shows one example 
of the retrieval by a querying image with the T3 data set. 
 

 

Fig. 8. An example of retrieved images in T3 data set. The upper-
left image is a query image. The other 15 images are
retrieved images for the query.  

 

4. T4 Data Set 

T4 data set is the scaled version of the T1 data set. One hun-
dred and sixteen original images with matrix size of 512×512 
are taken from the T1 data set. Then, the 116 images are scaled 
up and down by 5 %, i.e., 95%, 100% and 105% scaled images 
are obtained. Then, 128×128 size of images are taken at arbi-
trary positions from those scaled images and composed of a 
data set which is called as T4a data set. Next images with scal-
ing up and down with 10% are added onto the T4a data set and 
90%, 95%, 100%, 105% and 110% scaled images are com-
posed of T4b data set. Above procedure are repeated until the 
scales reach 50% and 150%. Then, 10 data sets are generated 
from T4a to T4j. The T4j data set is composed of 50% to 150% 
scaled images with increment of 5% scaling factor. So the total 
number of images for the T4j data set is 2436. 

The RR and AVRR are measured in T4a to T4j data sets, re-
spectively. 116 images with 100% scaling factor are querying 
images. Figure 9 shows an example of the retrieval by a query- 

 

Fig. 9. An example of retrieved images in T4 data set. The upper-
left image is a query image. The other 15 images are
retrieved images for the query.  

 
ing image with the T4j data set. 

5. T5 Data Set 

T5 data set includes images from Corel® album. The ground 
truth is selected by taking similar images with the querying im-
age. The querying images are chosen so that they have rela-
tively large texture patterns among the data sets. The number of 
chosen queries is 16. Total 2400 images constitute the data set. 
Fig. 10 shows an example of the retrieval by a querying image 
with the T5 data set. The query in the figure has 4 ground truths. 
 

 

Fig. 10. An example of retrieved images in T5 data set. The
upper-left image is a query image. The other 15 images
are retrieved images for the query.  
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6. T6 Data Set 

T6 data set consists of aerial images with 34,000 images of 
128×128. For a query, ground truth is determined by taking 
similar images. Figure 11 shows an example of the retrieval by 
a querying image with the T6 data set. 
 

 

Fig. 11. An example of retrieved images in T6 data set. Upper-
left image is a query image. The other 15 images are
retrieved images for the query.  

 

 

Fig. 12. An example of retrieved images in T7 data est. Upper-left
image is a query image. The other 15 images are retrieved
images for the query.  

 

7. T7 Data Set 

T7 data set is both scaled and rotated version derived from 
T1, T2, and T5 data sets. Seventy original images with matrix 
size of 512×512 are taken from the T1, T2 and T5 data sets 

such as 30 patterns from the T1 data set, 25 patterns from the 
T2 data set, and 15 patterns from T5 data set. The 70 images 
were rotated with 0, 8, 25, 55, 107, 131, and 174 degrees. Then, 
the rotated images are scaled with 90%, 80%, 70%, 60% and 
50%. Finally, the T7 data set is constructed by taking 128×128 
size image at arbitrary position from both rotated and scaled 
images. Total number of images in the T7 data set is 2400. The 
RR and AVRR are measured with 34 ground truths. The queries 
are 70 images with no rotation and 70% scaling. Figure 12 
shows an example of the retrieval by a querying image with the 
T7 data set. 

V. EXPERIMENTAL RESULTS 

To verify the performance of the MPEG-7 texture descriptor, 
experiments were performed with test data sets of the homoge-
neous texture descriptor. These are T1, T2, T3, T4, T5, T6, and 
T7 data sets. The constitution of databases and performance 
test procedure are mentioned in the previous sections. Table 3 
shows the average retrieval rates for the texture descriptor over 
T1, T2, T3, T4, and T7 data sets. As we can see, more than 
75 % of AVRR have been achieved for T1 data set. The per-
formance of the proposed methods can be compared to the re-
ported results in the literatures. This is because the T1 data set 
is widely used for texture description-experiments. Our results 
were the best among participants of the MPEG-7 texture-core 
experiments. Furthermore, as shown in T3, T4 and T7 data sets, 
our proposed method shows good results for rotated and/or 
scaled images.  

In Table 4, experimental results are shown to verify the effec-
tiveness of the scalability of the layered feature descriptor for 
T1 data set. Scalable representation of feature description (the 
meaning of allow for is not fit here) provides the flexibility for 
transmission bandwidth and database storage. As shown in Ta-
ble 4, 76.39 % of AVRR was obtained with the base layer in 
the T1 data set. Only 32 components of the descriptor were 
used. 77.32 % of AVRR was the result for the enhancement 
layer. 62 components of the descriptor were used. For the T1 
data set, half of the description size could be saved with only 
about 1% loss of AVRR. 

Furthermore, the texture descriptor is easy to compute be-
cause it is directly extracted in the frequency domain. We 
measured feature extraction time in a PC (Pentium II system 
with a 400 MHz CPU and an NT operating system). It takes 
around 0.14 seconds per one image query (128x128 image 
size). 

Table 5 shows a comparison of the average retrieval rates 
with those of other texture descriptor extraction methods which 
are available in literatures. The average retrieval rates for other 
methods are referred to in [5]. There the same experiments 
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Table 3. AVRR on the unified texture descriptor. 

Data set AVRR (%) 
T1 77.32 
T2 90.67 
T3 92.00 

T4a 86.21 
T4b 87.50 
T4c 88.94 
T4d 87.07 
T4e 84.91 
T4f 84.55 
T4g 83.87 
T4h 82.60 
T4i 79.60 

T4 

T4j 76.72 
T5 60.46 
T6 75.18 
T7 78.66 

  

 

Table 4. AVRR at the first layer and the second layer. 

Layer Features used AVRR(%) 

Base fDC, fSD, e(0), …,e(30) 76.39 

Enhancement fDC, fSD, e(0), …,e(30), ed(1),…, ed(30) 77.32 
  
 
were performed with the same database of the T1 data set. The 
AVRR was reported as 74.37% in the T1 data set using the Ga-
bor spatial filtering method. And it was reported as less than 
70% in the T1 using wavelet related methods. These are the 
pyramid wavelet transform method (PWT) and the tree wave-
let transform method (TWT) [5], [20]. With this T1 data set, the 
proposed algorithm of the texture descriptor extraction gives 
77.32% of AVRR. 
 

Table 5. AVRR on Brodaz album. 

Texture 
descriptors 

MPEG-7 
texture 

descriptor 
Gabor PWT TWT MRSAR

AVRR (%) 77.32 74.37 68.70 69.41 73.18
  

VI. CONCLUSIONS 

Texture is one of the salient features representing image con-

tents. In this paper, we present a texture description method for 
images. These feature vectors are made up of an image inten-
sity mean, a standard deviation 30 energy values and 30 energy 
deviations. The Polar frequency domain is partitioned based on 
the human visual system. From the feature channels within this 
domain, we can extract the energy values and energy devia-
tions. We have shown this to be a very effective texture 
description. For fast and reliable feature extraction, Radon 
transform is used to obtain Fourier transform of the image in 
the Polar domain. Radon transform provides dense sampling in 
low frequency regions and sparser sampling away from the 
origin of the Polar frequency domain. This is well suited to the 
Human visual system. The Human visual system is more sen-
sitive to signal variation in low frequencies and less sensitive in 
higher frequencies. 

Our texture descriptor is compact in representation regardless 
of image size and is shown to be effective in relevant image re-
trieval. Furthermore, the intensity-, scale-, and rotation-
invariant matching methods provide effective retrieval metrics 
for various applications. 

Our proposed texture description method can be utilized to 
index and retrieve image and video. Some examples of applica-
tions are fast video searching and video parsing. Another exam-
ple is contents-based image retrieval of aerial photos, fabric im-
ages, and electronic photo albums. The texture descriptor is a 
very effective way to describe object segmentation and image 
and video contents. 
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