• 제목/요약/키워드: Contact manifolds

검색결과 78건 처리시간 0.019초

ON C-BOCHNER CURVATURE TENSOR OF A CONTACT METRIC MANIFOLD

  • KIM, JEONG-SIK;TRIPATHI MUKUT MANI;CHOI, JAE-DONG
    • 대한수학회보
    • /
    • 제42권4호
    • /
    • pp.713-724
    • /
    • 2005
  • We prove that a (k, $\mu$)-manifold with vanishing E­Bochner curvature tensor is a Sasakian manifold. Several interesting corollaries of this result are drawn. Non-Sasakian (k, $\mu$)­manifolds with C-Bochner curvature tensor B satisfying B $(\xi,\;X)\;\cdot$ S = 0, where S is the Ricci tensor, are classified. N(K)-contact metric manifolds $M^{2n+1}$, satisfying B $(\xi,\;X)\;\cdot$ R = 0 or B $(\xi,\;X)\;\cdot$ B = 0 are classified and studied.

CERTAIN RESULTS ON ALMOST KENMOTSU MANIFOLDS WITH CONFORMAL REEB FOLIATION

  • Ghosh, Gopal;Majhi, Pradip
    • 대한수학회논문집
    • /
    • 제33권1호
    • /
    • pp.261-272
    • /
    • 2018
  • The object of the present paper is to study some curvature properties of almost Kenmotsu manifolds with conformal Reeb foliation. Among others it is proved that an almost Kenmotsu manifold with conformal Reeb foliation is Ricci semisymmetric if and only if it is an Einstein manifold. Finally, we study Yamabe soliton in this manifold.

QUASI CONTACT METRIC MANIFOLDS WITH KILLING CHARACTERISTIC VECTOR FIELDS

  • Bae, Jihong;Jang, Yeongjae;Park, JeongHyeong;Sekigawa, Kouei
    • 대한수학회보
    • /
    • 제57권5호
    • /
    • pp.1299-1306
    • /
    • 2020
  • An almost contact metric manifold is called a quasi contact metric manifold if the corresponding almost Hermitian cone is a quasi Kähler manifold, which was introduced by Y. Tashiro [9] as a contact O*-manifold. In this paper, we show that a quasi contact metric manifold with Killing characteristic vector field is a K-contact manifold. This provides an extension of the definition of K-contact manifold.

CONTACT CR-WARPED PRODUCT SUBMANIFOLDS IN KENMOTSU SPACE FORMS

  • ARSLAN, KADRI;EZENTAS, RIDVAN;MIHAl, ION;MURATHAN, CENGIZHAN
    • 대한수학회지
    • /
    • 제42권5호
    • /
    • pp.1101-1110
    • /
    • 2005
  • Recently, Chen studied warped products which are CR-submanifolds in Kaehler manifolds and established general sharp inequalities for CR-warped products in Kaehler manifolds. In the present paper, we obtain sharp estimates for the squared norm of the second fundamental form (an extrinsic invariant) in terms of the warping function for contact CR-warped products isometrically immersed in Kenmotsu space forms. The equality case is considered. Some applications are derived.