REGULAR GENERAL CONTACT MANIFOLDS

By Jorge Saenz C.

1. Introduction

It has proved that a compact connected manifold $M^{2 n+s}$ with a regular normal f-structure is the bundle space a principal T^{s}-bundle over a complex manifold $N^{2 n}$. Moreover, if $M^{2 n+s}$ is a K-manifold, then $N^{2 n}$ is a Kaehler manifold, [2]. In this work we prove that (Theorem 4.1) if the K-structure on $M^{2 n+s}$ is an S structure, then $N^{2 n}$ is a Hodge manifold. Conversely (Theorem 4.4), given a Hodge manifold $N^{2 n}$ and any $s \geqslant 1$, there exists a principal toroidal bundle $M\left(N, T^{s}\right)$ over N, whose bundle space $M^{2 n+s}$ has a regular S-structure.

2. Normal f-structures

A C^{∞}-manifold $M^{2 n+s}, n \geqslant 1$, is said to have an f-structure, if the structural group of its tangent bundle is reducible to $U(n) \times O(s)$. This is equivalent to the existence of a tensor field on M of type (1,1), rank $2 n$, satisfying $f^{3}+f=0$. Almost complex structures ($s=0$) and almost contact structures ($s=1$) are two examples of f-structures. If there exist vector fields E_{i} and 1 -forms, $\eta^{i}, 1<i<s$ such that

$$
f\left(E_{i}\right)=0, \quad \eta^{i}\left(E_{j}\right)=\delta_{j}^{i}, \quad \eta^{i} \circ f=0, \quad f^{2}=-I+\sum_{i=1}^{s} \eta^{i} \otimes E_{i}
$$

we say that $M^{2 n+s}$ has a framed f-structure, or, simply an (f, E_{i}, η^{i})-structure. A framed f-structure is normal if

$$
S=[f, f]+\sum_{i=1}^{s} d \eta^{i} \otimes E_{i}
$$

vanishes, where $[f, f]$ is the Nijenhuis tensor of g. In this case we have [3]:

$$
\text { 1) } L_{E_{i}} \eta^{j}=0, \text { 2) }\left[E_{i}, E_{j}\right]=0, \quad \text { 3) } L_{E_{i}} f=0, \quad \text { 4) } d \eta^{i}(f X, Y)=-d \eta^{i}(X, f Y) \text {. }
$$

The equality 2) implies that the vertical distribution (the one generated by all the E_{i}) is integrable.

It is known that for any $\left(f, E_{i}, \eta^{i}\right)$-structure there exists a Riemannian metric g which satisfies

$$
g(X, Y)=g(f X, f Y)+\sum_{i=1}^{s} \eta^{i}(X) \eta^{i}(Y) .
$$

A framed f-str ucture together with this metric is called a framed metric f-structure, or, simple, an, $\left(f, E_{i}, \eta^{i}, g\right)$-structure. The 2-form

$$
F(X, Y)=g(X, f Y)
$$

is called the fundamental 2-form of the $\left(f, E_{i}, \eta^{i}, g\right)$-structure. A K-structure is a normal (f, E_{i}, η^{i}, g)-structure whose fundamental 2 -form is closed.

Let D be an integrable distribution of dimension h on a manifold N^{m}. A cubical coordinate neighborhood $\left(U,\left(x^{1}, \cdots, x^{m}\right)\right)$ on N^{m} is said to be regular with respect to D if $\frac{\partial}{\partial x^{\prime}}, \cdots, \frac{\partial}{\partial x^{h}}$ is a basis for $D(p)$, for every $p \in U$, and if each leat of D intersects U in at most one n-dimensional slice of $\left(U,\left(x^{\prime}, \cdots, x^{m}\right)\right)$. We call D regular if each point $p \in N$ has a cubical coordinate neighborhood which is regular with respect to D.
$\operatorname{An}\left(f, E_{i}, \eta^{i}\right)$-structure is said to be regular if the vertical distribution is integrable and regular, and if each E_{i} is regular (the distribution generated by E_{i} is regular).

Let's state the theorem mentioned at the begining:
THEOREM 2.1 (Blair, Ludden, Yano). Let $M^{2 n+s}, n \geqslant 1$, be a compact connected manifold with a regular framed f-structure. Then $M^{2 n+s}$ is the bundle space of a principal toroidal bundle over a complex manifold $N^{2 n}$. Moreover, if the framed f-structure is a K-structure, then $N^{2 n}$ is a Kaehler manifold.

3. Toroidal bundles

Let $T^{1}=S^{1}$ and $T^{s}=\underbrace{1}_{S} \times \cdots \times S^{1}$ be the one-dimensional and s-dimensional torus respectively. Since these Lie groups are commutative, by choosing A, a nonzero element of the Lie algebra $L\left(T^{1}\right)$ of T^{1}, we identify $L\left(T^{1}\right)$ with R, and $L\left(T^{s}\right)$ $=L\left(T^{1}\right) \times \cdots \times L\left(T^{1}\right)$ with R^{s} by means of

$$
\left(0, \cdots, A_{i}, 0, \cdots, 0\right) \longleftrightarrow e_{i},
$$

where e_{1}, \cdots, e_{s} is the canonical basis of R^{s}.
Let $P\left[N, T^{s}\right]$ be the set of all T^{s}-bundles over the manifold N. If $P\left(\mathrm{~N}, \mathrm{~T}^{s}, \pi\right)$ and $Q\left(N, T^{s}, \pi\right)$ are two elements in this set, on

$$
\Delta(P \times Q)=\left\{(u, v) \in P \times Q \mid \pi(u)=\pi^{\prime}(v)\right\}
$$

we define the equivalent relation:
$\left(u_{1}, v_{1}\right) \sim\left(u_{2}, v_{2}\right) \leftrightarrow t \in T^{s}$ such that $\left(u_{1} t, v_{1} t^{-1}\right)=\left(u_{2}, v_{2}\right)$. The action of T^{s} on $\Delta(P \times Q)$ given by $((u, v), t) \rightarrow(u t, v)$, induces an action of T^{s} on

$$
P+Q=\frac{\Delta(P \times Q)}{\sim}
$$

obtaining, in this way, the new T^{s}-bundle $P+Q$. It is known that $P\left[N, T^{s}\right]$ with this operation, " + ", is an abelian group whose identity element is the trivial bundle $N \times T^{s}$, [4].

If ω is a connection form with curvature form Ω of a bundle $P\left(N, T^{s}\right)$, then

$$
\omega=\sum_{i=1}^{s} \omega_{i} \otimes e_{i} \text { and } \Omega=\sum_{i=1}^{s} d \omega_{i} \otimes e_{i} .
$$

Each real 2 -form $d \omega_{i}$ is horizontal and right invariant, therefore there exists a unique real 2-form Ω_{i}^{*} on N satisfying $d \omega_{i}=\pi^{*} \Omega_{i}^{*}$. Since the forms Ω_{i}^{*} are closed, they determine s cohomology classes $\left[\Omega_{i}^{*}\right], 1 \leqslant i \leqslant s$ in $H^{2}(N, R)$. These cohomology classes are independent from the connection. In this way we get the function

$$
\Psi: P\left[N, T^{s}\right] \rightarrow \underset{i=1}{s} H^{2}(N, R) \text { given by } P \rightarrow\left(\left[\Omega_{1}^{*}\right], \cdots,\left[\Omega_{s}^{*}\right]\right)
$$

Our intention now is to show that Ψ is a group homomorphism.
Suppose that $\left\{\phi_{\beta \alpha}\right\}$ are the transition function of $P\left(N, T^{s}\right)$ corresponding to some covering $\left\{U_{\alpha}\right\}$. Each function $\phi_{\beta \alpha}: U_{\beta} \cap U_{\alpha} \rightarrow T^{s}$ can be written as

$$
\left(\phi_{\beta \alpha^{\prime}}^{1}, \cdots, \phi_{\beta \alpha}^{s}\right) .
$$

Now $\left\{\phi_{\beta \alpha}^{i}\right\}$ are the transition functions of a 1-dimensional toroidal bundle P_{i} over N. If we construct the whitney sum $P_{1} \oplus \cdots \oplus P_{s}$, it happens that a set of transition functions of this sum is precisely $\left\{\phi_{\beta \alpha}\right\}$. In other words, P and $P_{1} \oplus$ $\cdots \oplus P_{s}$ have the same transition function. Therefore we may assume that

$$
P=P_{1} \oplus \cdots \oplus P_{s} \text { and } P\left[N, T^{s}\right]=\oplus_{i=1}^{s} P\left[N, T^{1}\right]
$$

Let h_{i} be the projection $h_{i}: P_{1} \oplus \cdots \oplus P_{s} \rightarrow P_{i^{*}}$. If Ω_{i} is a curvature form on P_{i}, there is a connection on P whose curvature form Ω satisfies:

$$
\Omega=\sum_{i=1}^{s} h_{i}^{*} \Omega_{i} \otimes e_{i} .
$$

Therefore we can assume that the function

$$
\Psi: P\left[N, T^{s}\right]=\oplus_{i=1}^{s} P\left[N, T^{1}\right] \rightarrow \oplus_{i=1}^{s} H^{2}(N, R)
$$

is given by $\frac{\Psi=\Psi \times \cdots \times \Psi}{s}$ where Ψ is the function

$$
\Psi: P\left[N, T^{1}\right] \rightarrow H^{2}(N, R) \text { such that } \Psi\left(P_{i}\right)=\left[\Omega_{i}^{*}\right]
$$

But this Ψ is precisely the function defined by S . Kobayashi in page 32 of [4]. Furthermore, he proves that $\Psi: P\left[N, T^{1}\right] \rightarrow H^{2}(N, R)$ is a group homomorphism which sends $P\left(N, T^{1}\right)$ onto $H^{2}(N, Z)_{b}$, where $H^{2}(N, Z)_{b}$ is the subgroup of $H^{2}(N, R)$ formed by all the elements which contain an integral closed from. Therefore

THEOREM 3.1. The function

$$
\begin{gathered}
\Psi: P\left[N, T^{s}\right] \rightarrow \oplus_{i=1}^{s} H^{2}(N, R) \\
P \rightarrow\left(\left[\Omega_{1}^{*}\right], \cdots,\left[\Omega_{s}^{*}\right]\right)
\end{gathered}
$$

is a group homomorphism, which sends $P\left[N, T^{s}\right]$ onto

$$
\oplus_{i=1}^{s} H^{2}(N, Z)_{b^{\bullet}}
$$

4. Regular S-structures

DEFINITION. A manifold $M^{2 n+s}$ is said to have an s-contact structure if there exist on $M \mathrm{~s}$ global, linearly independent 1 -forms $\eta^{1}, \cdots, \eta^{s}$ such that $d \eta^{1}=\cdots=$ $d \eta^{i}, d \eta^{i}$ has rank 2^{n} and, at every point of M,

$$
\eta^{1} \wedge \cdots \wedge \eta^{s} \wedge\left(d \eta^{i}\right)^{n} \neq 0
$$

It is known [1] that if $M^{2 n+s}$ has s-contact structure, then it has an ($f, E_{i,}$, $\left.\eta^{i}, g\right)$-structure, which we call associated to the s-contact structure, such that $F=a^{i} \eta^{i}$, where F is the fundamental 2-form. A normal (f, E_{i}, η^{i}, g)-structure associated to an s-contact structure is called an S-structure. Notice that an S structure is a K-structure.

THEOREM 4. 1. Let $M^{2 n+s}$ be a compact connected manifold with a regular S-structure $\left(f, E_{i}, \eta^{i}, g\right), i=1, \cdots, s$. Then $M^{2 n+s}$ is the bundle space of a principal toroidal bundle over a Hodge manifold $N^{2 n}$.

PROOF. By Theorem 2.1 and its proof we have that $M^{2 n \pm s}$ is the bundle space of a principal T^{s}-bundle over a Kaehler manifold $N^{2 n}$, and that the group action is given by the one-parameter groups of transformations of the vector fields E_{1}, \cdots, E_{s}.

Now we claim that the form

$$
\omega=\sum_{i=1}^{s} \eta^{i} \otimes e_{i}
$$

is a connection form. This is, ω satisfies:
a) $R_{t}^{*} \omega=\omega$, for $t \in T^{s}$.
b) $\omega\left(X^{*}\right)=X$, where X^{*} is the fundamental vector fields of X, with X in the Lie algebra of T^{s}.
Part a) follows from the fact $\mathrm{L}_{E_{i}} \eta^{j}=0, i, j=1, \cdots, s_{j}$, which is a consequence of the normality of the S-structure. For part b) it suffices to prove it for the vector $e_{i}, i=1, \cdots, s$. But this follows immediately from $e_{i}^{*}=E_{i}$.

On the other hand, from the proof of Theorem 2.1, we also have that the fundamental from of the f-structure, F, and the fundamental for of the Kaehlerian structure, Ω^{*}, are related by

$$
F=\pi^{*} \Omega^{*}
$$

where π is bundle projection. But, in the particular case of an S-structure, we have $F=d \eta^{i}, i=1, \cdots, s$. Therefore $d \eta^{i}=\pi^{*} \Omega^{*}$. Hence, by Theorem 3.1, $\left[\Omega{ }^{*}\right]$ is $H(N, Z)_{b}$, which says that $N^{2 n}$ is a Hogde manifold.

THEOREM 4.2. Let $M\left(N, T^{s}, \pi\right)$ be a principal toroidal bundle whose base space $N^{2 n}$ has an almost Hermitian structure. Then M has a regular (f, E_{i}, η_{i}^{i}, g-structure, $i=1, \cdots, s$.

PROOF. Fix a connection form $\omega=\sum_{i=1}^{s} \eta^{i} \otimes e_{i}$ on M and let E_{i} be the fundamental vector of $e_{i}, 1 \leqslant i \leqslant s$. Then we have

$$
\eta^{i}\left(E_{j}\right)=\delta_{j}^{i} .
$$

Let $\left(J, g^{\prime}\right)$ be the almost Hermitian structure of N. If $u \in M, \pi(u)=v$ and $\bar{\pi}_{v}: T_{v}(N) \rightarrow T_{i i}(M)$ is the lifting with respect to the fixed connection, define f by

$$
f(X)=\left(\bar{\pi}_{v} \circ j \circ \pi_{u}\right)(\mathrm{X}), \quad X \in T_{u}(M) .
$$

Then we have $f\left(E_{i}\right)=0$ and $\eta^{i} \circ f=0, i=1, \cdots, s$. We also have

$$
f^{2}(X)=(\bar{\pi} \circ j \circ \pi)^{2}(X)=-(\bar{\pi} \circ \pi)(X)=-X+\sum_{i=1}^{s} \eta^{i}(X) E_{i}
$$

this is, $f^{2}=-I+\sum_{i=1}^{s} \eta^{i} \otimes E_{i}$. Thus we have an $\left(f, E_{i}, \eta^{i}\right)$-structure, $1 \leqslant i \leqslant s$, on M. Furthermore, the Riemannian metric g on M defined by

$$
\mathrm{g}(X, Y)=g^{\prime}(\pi X, \pi Y)+\sum_{i=1}^{s} \eta_{i}^{i}(X) \eta^{t}(Y)
$$

is associated to this (f, E_{i}, η^{i})-structure, since

$$
\begin{aligned}
g(f X, f Y) & =g^{\prime}(\pi f X, \pi f Y)+\sum_{i=1}^{s} \eta^{i}(f X) \eta^{i}(f Y) \\
& =g^{\prime}(J \pi X, J \pi Y)=g^{\prime}(\pi X, \pi Y) \\
& =g(X, Y)-\sum_{i=1}^{s} \eta^{i}(X) \eta^{i}(Y) .
\end{aligned}
$$

It is clear from the definition of E_{i} that each one of these is regular. The regularity of the distribution determined by all the E_{i} 's (vertical distribution) follows from the Theorem XIV of [5], which says that if the leaf space of an integral distribution is a manifold and if the projection mapping takes the tangent space of any point onto the tangent space of its projection, then the distribution must be regular.

THEOREM 4.3. The framed f-structure defined in the previous theorem is normal if and only if the following two conditions hold:

1) J is a complex structure.
2) $d \omega(f X, Y)=-d \omega(X, f Y)$, for any X, Y.

PROOF. Since 2) is equivalent to 3) $d \omega(f X, f Y)=d \omega(X, Y)$ the theorem will follow as soon as we prove the two equalities:
a) $\pi(S(X, Y))=[J, J](\pi X, \pi Y) ; X, Y$ right invariant vector fields.
b) $\omega(S X, Y))=d \omega(X, Y)-d \omega(f X, f Y)$, for any X, Y.
a) If X, Y are right invariant vector fields on M, so are $[X, Y], f(X)$ and $f(Y)$. (f is right invariant). Besides, we have the relations:

$$
\pi[X, Y]=[\pi X, \pi Y] \text { and } \pi \circ f=J \circ \pi
$$

Therefore

$$
\pi(S(X, Y))=\pi\left([f, f](X, Y)+\Sigma d \eta^{i}(X, Y) E_{i}\right)=[J, J](\pi X, \pi Y) .
$$

b) Since f is horizontal we have $d \omega(f X, f Y)=-\omega([f X, f Y])$, Hence

$$
\omega(S(X, Y))=\omega([f X, f Y])+d \omega(f X, f Y)+d \omega(X, Y)
$$

THEOREM 4. 4. Let $N^{2 n}$ be a Hodge manifold. Then for each $s \geqslant 1$ there exists a principal toroidal bundle $M\left(N, T^{s}, \pi\right)$, whose bundle space $M^{2 n+s}$ has a regular S-siructure.

PROOF. Let $\left(J, g^{\prime}\right)$ be the Hodge structure on N, and Ω^{*} its fundamental 2 -form. Since $\left[\Omega^{*}\right] \in H^{2}(N, Z)_{b}$, then

By Theorem 3. 1, there exists a toroidal bundle $M=M\left(N, T^{s}, \pi\right)$ such that $\Psi^{*}(M)=\left(\left[\Omega^{*}\right], \cdots,\left[\Omega^{*}\right]\right)$. We can find a connection form $\omega=\sum_{i=1}^{s} \eta^{i} \otimes e_{i}$ whose curvature from $d \omega$ satisfies

$$
d \omega=\sum_{i=1}^{s} d \eta_{i}^{i} \otimes e_{i}=\sum_{i=1}^{s} \pi^{*} \Omega^{*} \otimes e_{i}
$$

The forms $\eta^{1}, \cdots, \eta^{s}$ define a s-contact structure on $M^{2 n+s}$. In fact, since $d \eta^{i}$ $=\pi^{*} \Omega^{*}$, the ranh of $d \eta^{i}$ is $2 n$.

On the other hand, if E_{1}, \cdots, E_{s} are the fundamental vector fields of e_{1}, \cdots, e_{s}, we have $\eta^{i}\left(E_{j}\right)=\delta_{j^{*}}^{i}$ Now, taking E_{1}, \cdots, E_{s} and $X_{1}, \cdots, X_{2 n}$ horizontal and linearly independent vectors, we get

$$
\begin{aligned}
& \eta^{1} \wedge \cdots \wedge \eta^{s} \wedge\left(d \eta^{i}\right)^{n}\left(E_{1}, \cdots, E_{s}, X_{1}, \cdots, X_{2 n}\right) \\
& \quad=\left(d \eta^{i}\right)^{n}\left(X_{1}, \cdots, X_{2 n}\right)=\Omega^{*}\left(\pi X, \cdots, \pi X_{2 n}\right) \neq 0
\end{aligned}
$$

which proves that $\eta^{1} \wedge \cdots \wedge \eta^{s} \wedge\left(d \eta^{i}\right)^{n} \neq 0$ at every point of M.
If $\left(f, E_{i}, \eta^{i}, g\right)$ is the framed f-structure on M constructed in the Theorem 4.2 using the Hodge structure (J, g^{\prime}) on N, we have

$$
F(X, Y)=g(X, f Y)=g^{\prime}(\pi X, \pi f Y)=g^{\prime}(\pi X, f \pi Y)=\Omega^{*}(\pi X, \pi Y)=d \eta^{i}(X, Y)
$$

Therefore this $\left(f, E_{i} \eta^{i}, g\right)$-structure is associated to this s-contact structure defined by $\eta^{1}, \cdots, \eta^{3}$. By Theorem 4.2 and its proof, $\left(f, E_{i} \eta^{i}, g\right)$ is regular. On the other hand, since J is a complex structure and $d \omega(f X, f Y)=d \omega(X, Y)$, $\left(f, E_{i}, \eta^{i}, g\right.$) is normal, and therefore a regular S-structure on M.

Jorge Sàenz
Universidad de Los Andes
Universidad Centro Occidental
Venezuela

REFERENCES

[1] Blair, D., Geometric of manifolds with structural group $U(n) \times O(s)$, Journal of Differential Geometric, 4(1970), pp. 155-167.
[2] \qquad , Jano, K.Ludden, G., Differential geometric Structures on principal roroidal bundles, Transaction of the American Mathematical Society, 181(1973), pp. 175-184.
[3] Goldberg, S.I. and Yano, K., On normal globally framed manifolds, Tohoku Mathematical Journal, 22(1970), pp.362-370.
[4] Kobayashi, S., Principal toroidal bundles with 1-dimensional toroidal group, Tohoku Mathematical Journal, 8(1956), pp.29-45.
[5] Palais, R., Grobal formulation of the Lie theory of transformation groups, Memoirs of the American Mathematical Society, No 22, (1957).

