REGULAR GENERAL CONTACT MANIFOLDS

By Jorge Saenz C.

1. Introduction

It has proved that a compact connected manifold M^{2n+s} with a regular normal f-structure is the bundle space a principal T^s -bundle over a complex manifold N^{2n} . Moreover, if M^{2n+s} is a K-manifold, then N^{2n} is a Kaehler manifold, [2]. In this work we prove that (Theorem 4.1) if the K-structure on M^{2n+s} is an S-structure, then N^{2n} is a Hodge manifold. Conversely (Theorem 4.4), given a Hodge manifold N^{2n} and any $s \geqslant 1$, there exists a principal toroidal bundle $M(N, T^s)$ over N, whose bundle space M^{2n+s} has a regular S-structure.

2. Normal f-structures

A C^{∞} -manifold M^{2n+s} , $n \geqslant 1$, is said to have an f-structure, if the structural group of its tangent bundle is reducible to $U(n) \times O(s)$. This is equivalent to the existence of a tensor field on M of type (1,1), rank 2n, satisfying $f^3+f=0$. Almost complex structures (s=0) and almost contact structures (s=1) are two examples of f-structures. If there exist vector fields E_i and 1-forms, η^i , $1 \leqslant i \leqslant s$ such that

$$f(E_i)\!=\!0, \ \eta^i(E_j)\!=\!\delta^{\;i}_{\;j}, \ \eta^i\circ f\!=\!0, \ f^2\!=\!-I\!+\!\textstyle\sum\limits_{i=1}^s \eta^i\!\otimes\! E_i$$

we say that M^{2n+s} has a framed f-structure, or, simply an (f, E_i, η^i) -structure. A framed f-structure is normal if

$$S = [f, f] + \sum_{i=1}^{s} d\eta^{i} \otimes E_{i}$$

vanishes, where [f, f] is the Nijenhuis tensor of g. In this case we have [3]:

1)
$$L_{E_i}\eta^i = 0$$
, 2) $[E_i, E_j] = 0$, 3) $L_{E_i}f = 0$, 4) $d\eta^i(fX, Y) = -d\eta^i(X, fY)$.

The equality 2) implies that the vertical distribution (the one generated by all the E_i) is integrable.

It is known that for any (f, E_i, η^i) -structure there exists a Riemannian metric g which satisfies

$$g(X, Y) = g(fX, fY) + \sum_{i=1}^{s} \eta^{i}(X)\eta^{i}(Y).$$

A framed f-str ucture together with this metric is called a framed metric f-structure, or, simple, an, (f, E_i, η^i, g) -structure. The 2-form

$$F(X, Y) = g(X, fY)$$

is called the fundamental 2-form of the (f, E_i, η^i, g) -structure. A K-structure is a normal (f, E_i, η^i, g) -structure whose fundamental 2-form is closed.

Let D be an integrable distribution of dimension h on a manifold N^m . A cubical coordinate neighborhood $(U, (x^1, \dots, x^m))$ on N^m is said to be regular with respect to D if $\frac{\partial}{\partial x'}$, \dots , $\frac{\partial}{\partial x^h}$ is a basis for D(p), for every $p \in U$, and if

each leat of D intersects U in at most one n-dimensional slice of $(U, (x', \dots, x^m))$. We call D regular if each point $p \in N$ has a cubical coordinate neighborhood which is regular with respect to D.

An(f, E_i , η^i)-structure is said to be *regular* if the vertical distribution is integrable and regular, and if each E_i is regular (the distribution generated by E_i is regular).

Let's state the theorem mentioned at the begining:

THEOREM 2.1 (Blair, Ludden, Yano). Let M^{2n+s} , n > 1, be a compact connected manifold with a regular framed f-structure. Then M^{2n+s} is the bundle space of a principal toroidal bundle over a complex manifold N^{2n} . Moreover, if the framed f-structure is a K-structure, then N^{2n} is a Kaehler manifold.

3. Toroidal bundles

Let $T^1 = S^1$ and $T^s = S^1 \times \cdots \times S^1$ be the one-dimensional and s-dimensional torus

respectively. Since these Lie groups are commutative, by choosing A, a nonzero element of the Lie algebra $L(T^1)$ of T^1 , we identify $L(T^1)$ with R, and $L(T^s) = L(T^1) \times \cdots \times L(T^1)$ with R^s by means of

$$(0, \dots, A, 0, \dots, 0) \longleftrightarrow e_i$$

where e_1 , ..., e_s is the canonical basis of R^s .

Let $P[N, T^s]$ be the set of all T^s -bundles over the manifold N. If $P(N, T^s, \pi)$ and $Q(N, T^s, \pi)$ are two elements in this set, on

$$\Delta(P \times Q) = \{(u, v) \in P \times Q | \pi(u) = \pi'(v)\}$$

we define the equivalent relation:

 $(u_1, v_1) \sim (u_2, v_2) \leftrightarrow t \in T^s$ such that $(u_1t, v_1t^{-1}) = (u_2, v_2)$. The action of T^s on $\Delta(P \times Q)$ given by $((u, v), t) \rightarrow (ut, v)$, induces an action of T^s on

$$P+Q=\frac{\Delta(P\times Q)}{\sim}$$

obtaining, in this way, the new T^s -bundle P+Q. It is known that $P[N, T^s]$ with this operation, "+", is an abelian group whose identity element is the trivial bundle $N \times T^s$, [4].

If ω is a connection form with curvature form Ω of a bundle $P(N, T^s)$, then

$$\omega \!=\! \sum_{i=1}^s \! \omega_i \! \otimes \! e_i \text{ and } \quad \! \Omega \! = \! \sum_{i=1}^s d\omega_i \otimes \! e_i .$$

Each real 2-form $d\omega_i$ is horizontal and right invariant, therefore there exists a unique real 2-form Ω_i^* on N satisfying $d\omega_i = \pi^* \Omega_i^*$. Since the forms Ω_i^* are closed, they determine s cohomology classes $[\Omega_i^*]$, $1 \le i \le s$ in $H^2(N,R)$. These cohomology classes are independent from the connection. In this way we get the function

$$\Psi: P[N, T^s] \rightarrow \underset{i=1}{\overset{s}{\mapsto}} H^2(N, R)$$
 given by $P \rightarrow ([\Omega_1^*], \dots, [\Omega_s^*]).$

Our intention now is to show that Ψ is a group homomorphism.

Suppose that $\{\phi_{\beta\alpha}\}$ are the transition function of $P(N,T^s)$ corresponding to some covering $\{U_{\alpha}\}$. Each function $\phi_{\beta\alpha}:U_{\beta}\cap U_{\alpha}\to T^s$ can be written as

$$(\phi_{\beta\alpha}^1, \cdots, \phi_{\beta\alpha}^s).$$

Now $\{\phi_{\beta\alpha}^i\}$ are the transition functions of a 1-dimensional toroidal bundle P_i over N. If we construct the whitney sum $P_1 \oplus \cdots \oplus P_s$, it happens that a set of transition functions of this sum is precisely $\{\phi_{\beta\alpha}\}$. In other words, P and $P_1 \oplus \cdots \oplus P_s$ have the same transition function. Therefore we may assume that

$$P=P_1\oplus\cdots\oplus P_s$$
 and $P[N, T^s]=\bigoplus_{i=1}^s P[N, T^1]$.

Let h_i be the projection $h_i: P_1 \oplus \cdots \oplus P_s \to P_i$. If Ω_i is a curvature form on P_i , there is a connection on P whose curvature form Ω satisfies:

$$\Omega = \sum_{i=1}^{s} h_i^* \Omega_i \otimes e_i$$

Therefore we can assume that the function

$$\Psi: P[N, T^s] = \bigoplus_{i=1}^{s} P[N, T^1] \to \bigoplus_{i=1}^{s} H^2(N, R)$$

is given by $\Psi = \Psi \times \cdots \times \Psi$ where Ψ is the function

$$\Psi: P[N, T^1] \rightarrow H^2(N, R)$$
 such that $\Psi(P_i) = [\Omega_i^*]$.

But this Ψ is precisely the function defined by S. Kobayashi in page 32 of [4]. Furthermore, he proves that $\Psi: P[N, T^1] \to H^2(N, R)$ is a group homomorphism which sends $P(N, T^1)$ onto $H^2(N, Z)_b$, where $H^2(N, Z)_b$ is the subgroup of $H^2(N, R)$ formed by all the elements which contain an integral closed from. Therefore

THEOREM 3.1. The function

$$\Psi: P[N, T^{s}] \to \bigoplus_{i=1}^{s} H^{2}(N, R)$$
$$P \to ([\Omega_{i}^{*}], \dots, [\Omega_{i}^{*}])$$

is a group homomorphism, which sends P[N, Ts] onto

$$\bigoplus_{i=1}^{s} H^{2}(N, Z)_{b}.$$

4. Regular S-structures

DEFINITION. A manifold M^{2n+s} is said to have an s-contact structure if there exist on M s global, linearly independent 1-forms η^1 , ..., η^s such that $d\eta^1 = \cdots = d\eta^i$, $d\eta^i$ has rank 2^n and, at every point of M,

$$\eta^1 \wedge \cdots \wedge \eta^s \wedge (d\eta^i)^n \neq 0.$$

It is known [1] that if M^{2n+s} has s-contact structure, then it has an (f, E_i, η^i, g) -structure, which we call associated to the s-contact structure, such that $F = d\eta^i$, where F is the fundamental 2-form. A normal (f, E_i, η^i, g) -structure associated to an s-contact structure is called an S-structure. Notice that an S-structure is a K-structure.

THEOREM 4.1. Let M^{2n+s} be a compact connected manifold with a regular S-structure (f, E_i, η^i, g) , $i=1, \dots, s$. Then M^{2n+s} is the bundle space of a principal toroidal bundle over a Hodge manifold N^{2n} .

PROOF. By Theorem 2.1 and its proof we have that $M^{2n\pm s}$ is the bundle space of a principal T^s -bundle over a Kaehler manifold N^{2n} , and that the group action is given by the one-parameter groups of transformations of the vector fields E_1, \dots, E_{s^*}

Now we claim that the form

$$\omega = \sum_{i=1}^{s} \eta^{i} \otimes e_{i}$$

is a connection form. This is, ω satisfies:

- a) $R_t^* \omega = \omega$, for $t \in T^s$.
- b) $\omega(X^*)=X$, where X^* is the fundamental vector fields of X, with X in the Lie algebra of T^s .

Part a) follows from the fact $L_{E_i}\eta^j=0$, i, j=1, \cdots , s_j , which is a consequence of the normality of the S-structure. For part b) it suffices to prove it for the vector e_i , i=1, \cdots , s. But this follows immediately from $e_i^*=E_i$.

On the other hand, from the proof of Theorem 2.1, we also have that the fundamental from of the f-structure, F, and the fundamental for of the Kaehlerian structure, Ω^* , are related by

$$F = \pi^* \Omega^*$$

where π is bundle projection. But, in the particular case of an S-structure, we have $F = d\eta^i$, $i = 1, \dots, s$. Therefore $d\eta^i = \pi^* \Omega^*$. Hence, by Theorem 3.1, $[\Omega^*]$ is $H(N, Z)_b$, which says that N^{2n} is a Hogde manifold.

THEOREM 4.2. Let $M(N, T^s, \pi)$ be a principal toroidal bundle whose base space N^{2n} has an almost Hermitian structure. Then M has a regular (f, E_i, η^i, g) -structure, $i=1, \dots, s$.

PROOF. Fix a connection form $\omega = \sum_{i=1}^{s} \eta^{i} \otimes e_{i}$ on M and let E_{i} be the fundamental vector of e_{i} , $1 \leq i \leq s$. Then we have

$$\eta^{i}(E_{j}) = \delta^{i}_{j}$$
.

Let (J,g') be the almost Hermitian structure of N. If $u{\in}M$, $\pi(u){=}v$ and $\overline{\pi}_v: T_v(N){\to}T_u(M)$ is the lifting with respect to the fixed connection, define f by

$$f(X) = (\overline{\pi}_{v} \circ j \circ \pi_{u})(X), X \in T_{u}(M).$$

Then we have $f(E_i)=0$ and $\eta^i \circ f=0$, $i=1, \dots, s$. We also have

$$f^{2}(X) = (\overline{\pi} \circ j \circ \pi)^{2}(X) = -(\overline{\pi} \circ \pi)(X) = -X + \sum_{i=1}^{s} \eta^{i}(X)E_{i}$$

this is, $f^2 = -I + \sum_{i=1}^{s} \eta^i \otimes E_i$. Thus we have an (f, E_i, η^i) -structure, $1 \le i \le s$, on M. Furthermore, the Riemannian metric g on M defined by

$$g(X, Y) = g'(\pi X, \pi Y) + \sum_{i=1}^{s} \eta^{i}(X)\eta^{i}(Y)$$

is associated to this (f, E_i, η^i) -structure, since

$$g(fX, fY) = g'(\pi fX, \pi fY) + \sum_{i=1}^{s} \eta^{i}(fX)\eta^{i}(fY)$$

= $g'(f\pi X, f\pi Y) = g'(\pi X, \pi Y)$
= $g(X, Y) - \sum_{i=1}^{s} \eta^{i}(X)\eta^{i}(Y)$.

It is clear from the definition of E_i that each one of these is regular. The regularity of the distribution determined by all the E_i 's (vertical distribution) follows from the Theorem XIV of [5], which says that if the leaf space of an integral distribution is a manifold and if the projection mapping takes the tangent space of any point onto the tangent space of its projection, then the distribution must be regular.

THEOREM 4.3. The framed f-structure defined in the previous theorem is normal if and only if the following two conditions hold:

- 1) J is a complex structure.
- 2) $d\omega(fX, Y) = -d\omega(X, fY)$, for any X, Y.

PROOF. Since 2) is equivalent to 3) $d\omega(fX, fY) = d\omega(X, Y)$ the theorem will follow as soon as we prove the two equalities:

- a) $\pi(S(X, Y)) = [J, J](\pi X, \pi Y)$; X, Y right invariant vector fields.
- b) $\omega(SX, Y) = d\omega(X, Y) d\omega(fX, fY)$, for any X, Y.
- a) If X, Y are right invariant vector fields on M, so are [X, Y], f(X) and f(Y). (f is right invariant). Besides, we have the relations:

$$\pi[X, Y] = [\pi X, \pi Y]$$
 and $\pi \circ f = J \circ \pi$.

Therefore

$$\pi(S(X, Y)) = \pi([f, f](X, Y) + \Sigma d\eta^{i}(X, Y)E_{i}) = [f, f](\pi X, \pi Y).$$

b) Since f is horizontal we have $d\omega(fX, fY) = -\omega([fX, fY])$. Hence

$$\omega(S(X, Y)) = \omega([fX, fY]) + d\omega(fX, fY) + d\omega(X, Y).$$

THEOREM 4.4. Let N^{2n} be a Hodge manifold. Then for each $s \ge 1$ there exists a principal toroidal bundle $M(N, T^s, \pi)$, whose bundle space M^{2n+s} has a regular S-structure.

PROOF. Let (J, g') be the Hodge structure on N, and Ω^* its fundamental 2-form. Since $[\Omega^*] \in H^2(N, Z)_b$, then

$$([\Omega_{\underbrace{}}^{*}], \underbrace{\cdots}, [\Omega_{\underbrace{}}^{*}]) \in \bigoplus_{i=1}^{s} H^{2}(N, Z)_{b}.$$

By Theorem 3. 1, there exists a toroidal bundle $M=M(N,T^s,\pi)$ such that $\Psi(M)=([\Omega^*],\cdots,[\Omega^*])$. We can find a connection form $\omega=\sum\limits_{i=1}^s\eta^i\otimes e_i$ whose curvature from $d\omega$ satisfies

$$d\omega \!=\! \textstyle\sum\limits_{i=1}^{s} d\eta^{i} \otimes e_{i} \!=\! \textstyle\sum\limits_{i=1}^{s} \pi^{*} \, \Omega^{*} \otimes e_{i} \!.$$

The forms η^1 , ..., η^s define a s-contact structure on M^{2n+s} . In fact, since $d\eta^i = \pi^* \Omega^*$, the ranh of $d\eta^i$ is 2n.

On the other hand, if E_1 , ..., E_s are the fundamental vector fields of e_1 , ..., e_s , we have $\eta^i(E_j) = \delta^i_j$. Now, taking E_1 , ..., E_s and X_1 , ..., X_{2n} horizontal and linearly independent vectors, we get

$$\begin{split} & \eta^{1} \wedge \dots \wedge \eta^{s} \wedge (d\eta^{i})^{n}(E_{1}, \ \dots, \ E_{s}, \ X_{1}, \ \dots, \ X_{2n}) \\ & = (d\eta^{i})^{n}(X_{1}, \ \dots, \ X_{2n}) = \mathcal{Q}^{*}(\pi X, \ \dots, \ \pi X_{2n}) \neq 0 \end{split}$$

which proves that $\eta^1 \wedge \cdots \wedge \eta^s \wedge (d\eta^i)^n \neq 0$ at every point of M.

If (f, E_i, η^i, g) is the framed f-structure on M constructed in the Theorem 4.2 using the Hodge structure (J, g') on N, we have

$$F(X, Y) = g(X, fY) = g'(\pi X, \pi f Y) = g'(\pi X, f \pi Y) = \Omega^*(\pi X, \pi Y) = d\eta^i(X, Y).$$

Therefore this $(f, E_i \eta^i, g)$ -structure is associated to this s-contact structure defined by η^1, \cdots, η^s . By Theorem 4.2 and its proof, $(f, E_i \eta^i, g)$ is regular. On the other hand, since f is a complex structure and $d\omega(fX, fY) = d\omega(X, Y)$, (f, E_i, η^i, g) is normal, and therefore a regular S-structure on M.

Jorge Sàenz Universidad de Los Andes Universidad Centro Occidental Venezuela

REFERENCES

- [1] Blair, D., Geometric of manifolds with structural group $U(n)\times O(s)$, Journal of Differential Geometric, 4(1970), pp.155-167.
- [2] _____, Jano, K. Ludden, G., Differential geometric Structures on principal roroidal bundles, Transaction of the American Mathematical Society, 181(1973), pp. 175-184.
- [3] Goldberg, S.I. and Yano, K., On normal globally framed manifolds, Tohoku Mathematical Journal, 22(1970), pp. 362-370.
- [4] Kobayashi, S., Principal toroidal bundles with 1-dimensional toroidal group, Tohoku Mathematical Journal, 8(1956), pp.29-45.
- [5] Palais, R., Grobal formulation of the Lie theory of transformation groups, Memoirs of the American Mathematical Society, No 22, (1957).