DOI QR코드

DOI QR Code

ON THE CLOSED EINSTEIN-WEYL STRUCTURE AND COMPACT K-CONTACT MANIFOLD

  • Received : 2015.12.26
  • Published : 2016.11.30

Abstract

We study closed Einstein-Weyl structure on compact K-contact manifolds and prove that a compact K-contact manifold admitting a closed Einstein-Weyl structure is Einstein and Sasakian.

Keywords

References

  1. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Math. 203 Birkhauser, Boston-Basel-Berlin, 2002.
  2. C. P. Boyer and K. Galicki, On Sasakian Einstein geometry, Internat. J. Math. 11 (2000), no. 7, 873-909. https://doi.org/10.1142/S0129167X00000477
  3. C. P. Boyer and K. Galicki, Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2419-2430. https://doi.org/10.1090/S0002-9939-01-05943-3
  4. C. P. Boyer, K. Galicki, and P. Matzeu, On ${\eta}$-Einstein Sasakian geometry, Comm. Math. Phys. 262 (2006), no. 1, 177-208. https://doi.org/10.1007/s00220-005-1459-6
  5. P. Gauduchon, La 1-forme de torsion d'une variete hermitienne compacte, Math. Ann. 267 (1984), no. 4, 495-518. https://doi.org/10.1007/BF01455968
  6. P. Gauduchon, Structures de Weyl-Einstein, espaces de twisteurs et varietes de type $S^1{\times}S^3$, J. Reine Angew. Math. 469 (1995), 1-50.
  7. P. Gauduchon and A. Moroianu, Weyl-Einstein structures on K-contact manifolds, arXiv:1601.00892v1 (5th Jan, 2016).
  8. A. Ghosh, Einstein-Weyl structures on contact metric manifolds, Ann. Glob. Anal. Geom. 35 (2009), no. 4, 431-441. https://doi.org/10.1007/s10455-008-9145-5
  9. T. Higa, Weyl manifolds and Einstein-Weyl manifolds, Comment. Math. Univ. St. Paul. 42 (1993), no. 2, 143-160.
  10. N. J. Hitchin, Compact four-dimensional Einstein manifolds, J. Differentail Geom. 9 (1974), 435-441. https://doi.org/10.4310/jdg/1214432419
  11. P. Matzeu, Almost contact Einstein-Weyl structures, Manuscripta Math. 108 (2002), no. 3, 275-288. https://doi.org/10.1007/s002290200262
  12. P. Matzeu, Closed Einstein-Weyl structures on compact Sasakian and cosymplectic manifolds, Proc. Edinb. Math. Soc. 54 (2011), no. 1, 149-160. https://doi.org/10.1017/S0013091509000807
  13. A. Moroianu, Parallel and Killing Spinors on $Spin^c$ manifolds, Comm. Math. Phys. 187 (1997), no. 2, 417-427. https://doi.org/10.1007/s002200050142
  14. F. Narita, Riemannian submersions and Riemannian manifolds with Einstein-Weyl structures, Geom. Dedicata 65 (1997), no. 1, 103-116. https://doi.org/10.1023/A:1004988728034
  15. F. Narita, Einstein-Weyl structures on almost contact metric manifolds, Tsukuba J. Math. 22 (1998), no. 1, 87-98. https://doi.org/10.21099/tkbjm/1496163471
  16. H. Pedersen and A. Swann, Riemannian submersions, four manifolds and Einstein-Weyl geometry, Proc. London Math. Soc. 66 (1993), no. 2, 381-399.
  17. S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700-717.
  18. K. P. Tod, Compact 3-dimensional Einstein-Weyl structures, J. London Math. Soc. 45 (1992), no. 2, 341-351.
  19. H. Weyl, Space-Time-Matter, Dover, New York, 1952 (translation of the fourth edition of Raum, Zeit, Materie, the first edition which was published in 1918 by Springer, Berlin).

Cited by

  1. Einstein–Weyl structures on almost cosymplectic manifolds pp.1588-2829, 2019, https://doi.org/10.1007/s10998-018-00279-6