• Title/Summary/Keyword: Constitutive Behavior

Search Result 812, Processing Time 0.023 seconds

Flexural Analysis of Steel Fiber Rreinforced Concrete Beam (강섬유 보강 콘크리트 보의 휨 해석)

  • 이차돈
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.113-122
    • /
    • 1990
  • An analytical simulation of the flexural behavior of SFRC beam has been illustrated. Curvature distributions and crack opening in critical region were taken into account. Compressive and tensile constitutive models which express post-peak behavior of SFRC with stress-crack opening relationships were incorporated in simulating nonlinear flexural behavior of the beam. The model was able to predict test results with reasonable accuracy. Behavior of the critical section and effects of different factors m the flexural behavior of SFRC beam were investigated. Simple observation and statistical approach have been made in selecting most influential parameters in flexural behavior of SFRC.

  • PDF

An Elasto-Plastic Constitutive Model for the nonlinearity at Small Strain Conditions (미소변형률 조건에서의 비선형성에 대한 탄소성 구성모델)

  • 오세붕;권기철;김동수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.351-356
    • /
    • 1999
  • An elasto-plastic constitutive model was Proposed, in which the behavior at small-to-large strain level can be modeled. From a mathematical approach it was proved that the model includes the previous successful models. The experimental results of a series of resonant column tests, torsional shear tests and triaxial tests were verified and as a result the proposed model could predict small-to-large strain behavior more consistently and accurately than the hyperbolic model and the Ramberg-Osgood model for a weathered granitic soil.

  • PDF

System Identification on SFRC Beam (SFRC 보에 대한 System Identification)

  • 이차돈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.3-7
    • /
    • 1991
  • Considering the relatively large amount of stable flexural teat results available for steel fiber reinforced concrete (SFRC) and their dependency on the constitutive behavior of the material, a technique called “System Identification” is used for interpretating the flexural test data in order to obtain basic information on the tensile constitutive behavior of steel fiber reinforced concrete. “System Identification” was successful in obtaining optimum sets of parameters which provide satisfactory matches between the measured and predicted flexural load-deflection relationships.

  • PDF

One-Dimensional Modeling For Nonlinear Behavior of Ferroelectric Materials (강유전체의 비선형 거동에 대한 1차원 모델링)

  • Kim, Sang-Joo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1378-1383
    • /
    • 2003
  • A ferroelectric (called piezoelectric afterwards) wafer has been widely used as a key component of actuators or sensors of a layer type. According to recent researches, the piezoelectric wafer behaves in a nonlinear way under excessive electro-mechanical loadings. In the present paper, one-dimensional constitutive equations for the nonlinear behavior of a piezoelectric wafer are proposed based on the principles of thermodynamics and a simple viscoplasticity theory. The predictions of the developed model are compared with experimental observations.

  • PDF

Prediction of Three -Dimensional Behavior of Sand by Isotropic Single Hardening Constitutive Model (등방단일경화구성모델에 의한 모래의 3차원거동 예측)

  • 홍원표;남정만
    • Geotechnical Engineering
    • /
    • v.10 no.1
    • /
    • pp.103-118
    • /
    • 1994
  • A series of drained triaxial testis was performed on a Band by use of cubical triaxial apparatus, in which three principal stresses could be applied independently. The stress -strain behavior on the same stress path with cubical triaxial test was analyzed with application of the isotropic single hardening constitutive model presented by Lade. The behavior predicted by the constitutive model presented good coincidence with experimental results during poi mary loading. However, the predicted Mo윤ding and reloading behavior wan much different from results of cubical triaxial testy. That is, the softening part of the prediction might result in a rough approximation, since the plastic work parameters of single hardening model were based on the hardening portion of the data.

  • PDF

The Seismic Performance of Rockfill Dam with Elasto-Plastic Constitutive Model (탄-소성 구성모델을 이용한 사력댐의 동적거동특성)

  • 이종욱;임정열;오병현;임희대
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.91-97
    • /
    • 2002
  • Total stress analysis method and nonlinear constitutive models have been used to analyze a dynamic performance of Dams but, there is some limitation in analysis, for example, effects of build up of pore pressure and generations of permanent deformations. Therefore considering these limitations, which is mentioned before, dynamic behavior characteristics of dams and response acceleration characteristics was analyzed in time domain, applying an elasto-plastic constitutive model and effective analysis method.

  • PDF

Nonlinear Dynamic Analysis of RC Frames Based on Constitutive Models of Constituent Materials (재료의 구성모델에 따른 철근콘크리트 골조의 비선형 동적거동 특성 차이에 관한 연구)

  • Heo, YeongAe;Kang, Thomas H.K.
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • Constitutive modeling of constituent materials is very important for reinforced concrete (RC) frames. Cyclic constitutive behavior of unconfined concrete, confined concrete and reinforcing steel should be well defined in fiber-based discretization of RC sections. This study performs nonlinear dynamic analyses of RC frame structures to investigate the sensitivity of seismic behavior of such frames to different constitutive models of constituent materials. The study specifically attempts to examine confinement effects in concrete modeling and degrading effects in steel modeling, which substantially affects the monotonic, cyclic and seismic responses of RC members and frames. Based on the system level analysis, it is shown that the response of non-ductile frames is less sensitive to confined concrete models while the modeling of reinforcing steel is quite influential to the inelastic response of both non-ductile and ductile frames.

Warm Tensile Deformation Behavior and Constitutive Equation of Supersaturated Solid-Solutionized Al-9Mg Extruded Alloy

  • Seung Y. Yang;Bong H. Kim;Da B. Lee;Kweon H. Choi;Nam S. Kim;Seong H. Ha;Young O. Yoon;Hyun K. Lim;Shae Kim;Young J. Kim
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.4
    • /
    • pp.1013-1018
    • /
    • 2021
  • In this paper, as a purpose to apply the supersaturated solid-solutionized Al-9Mg alloy to the structural sheet parts of automotive, tensile tests were conducted under the various conditions and a constitutive equation was derived from the tensile test results. Al-9Mg alloy was produced using a special Mg master alloy containing Al2Ca during the casting process and extruded into the sheet. In order to study the deformation behavior of Al-9Mg alloy in warm temperature forming environments, tensile tests were conducted under the temperature of 373 K-573 K and the strain rate of 0.001/s~0.1/s. In addition, by using the raw data obtained from tensile tests, a constitutive equation of the Al-9Mg alloy was derived for predicting the optimized condition of the hot stamping process. Al-9Mg alloy showed uncommon deformation behavior at the 373 K and 473 K temperature conditions. The calculated curves from the constitutive equation well-matched with the measured curves from the experiments particularly under the low temperature and high strain rate conditions.

Prediction of Springback by Using Constitutive Equations of Mg Alloy Sheets (마그네슘 합금 구성식을 이용한 스프링백 예측)

  • Lee, M.G.;Chung, K.;Kim, S.J.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.97-101
    • /
    • 2008
  • Unique constitutive behavior of magnesium alloys as one of hexagonal close packed(hcp) metals has been implemented into the commercial finite element program ABAQUS. The constitutive equations can represent asymmetry in tension-compression yield stresses and flow curves. For the verification purpose, the springback of AZ31B magnesium alloy sheet was measured using the unconstrained cylindrical bending test proposed in Numisheet'2002 benchmark committee. Besides the developed constitutive models, the isotropic models based on tensile and compressive properties were also considered for comparison purpose. The predicted results by the finite element analysis and corresponding experiments showed enhanced prediction capability in springback analysis.

The Analysis of Tunnel Behavior using Different Constitutive Models (다양한 구성방정식에 따른 터널 거동해석)

  • Kim, Young-Min;Kang, Seong-Gwi
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.73-81
    • /
    • 2010
  • The paper presents the application of FE simulations of NATM tunnel using different constitutive models. The results from a series of two dimensional plane strain finite element analyses of medium-liner interaction for NATM are presented. Four types of constitutive models are considered, namely, linear elastic, elasto-plastic Mohr-Coulomb, Hardening-Soil, Soft-Soil model. The design for tunnels requires a proper estimate of surface settlement and lining forces. It is shown that the advanced constitutive model gives better predictions for both ground movement and structural forces.