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ABSTRACT

Considering the relatively large amount of stable ’flextral test results available for
steel fiber reinforced concrete (SFRC) and their dependency on the constitutive behavior
of the material, a technique called "System Identification” is used for interpretating the

flexural test data in order to obtain basic
behavior of steel fiber reinforced concrete.

information on the tensile constitutive
“System Identification” was successful in

obtaining optimum sets of parameters which provide satisfactory matches between the
measured and predicted flexural load-deflection relationships.

1. INTRODUCTION

Flexural load-deflection relationships for SFRC
are dependent on the tensile and compressive
constitutive behavior of the material, The
.relative ease of conducting flexural tests
compared with direct tension tests and large
amount of available flexural test results are
reflected as an inverse problem in this study on
deriving basic SFRC tensile constitutive
behavior of SFRC under flexure. Inverse
problem is solved in this investigation by using
the method of “System Identification.” The
derived values through “System Identification”

are then compared with analytically, and
experimentally obtained values, and some
discussions are made regarding the strain

gradient effects on constitutive behavior of
steel fiber reinforced concrete.

2. SYSTEM IDENTIFICATION

In “System Identification” the response of the
system to a given input is known from
experiments and a mathematical model is to be
found which will describe the material behavior.
The mathematical models which can simulate both
the physical flexwal behavior of SFRC and
constitutive behavior of the material must be
well established. The characteristic material
values in constitutive models are then adjusted
until the best possible correlation is achieved
between the predicted and measured responses of
SFRC under flexure.

A mathematical form for error function is
needed to measure the correlation between test
results and predictions of the mathematical
model for a given set of characteristic values.
The error function should be able to quantify
the differences in important flexural
characteristics of SFRC. “System
Identification” deals with finding the location
on the surface with minimum error, the
coordinates of which will be the desired
optimizing parameters,

In order to simulate the steel fiber
reinforced concrete behavior under flexural
loading, compressive and tensile constitutive
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models of SFRC (Soroushian and Lee 1989;
were incorporated into the flexural analysis
procedure developed by the authors (Soroushian
and Lee 1990), Three important charactersitic
parameters of the tensile constitutive behavior
of SFRC were then selected out of the ten
material-related and ten constitutive
behavior-related factors of SFRC, which will be
discussed later, and these three parameters were
then optimized, while other factors were kept
constant as “statndard” values. The "standard”
values of the factors have been chosen either on
the basis of test results or considering
practical ranges applicable to SFRC.

The error function (E) is defined to measure

1990)

the correlation in overall flexural behavior
between the experimentally measured and
theoretically predicted load-deflection
relationships. The characteristic values

expressing the flexural behavior of SFRC are
peak flexural load (P), flexural ductility (D),
and flexural toughness (A). The differences in
these characteristic values set the bases for

computing the error between predicted and
experimental flexural load-deflection
relationships:
3
E =3 wiei? 1)
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where wi = weighing coefficients for each factor
= 1.0 in this investigation; e1 = (Pe = Pt)/Pe $
ez = (Do —Dt)/Do ;5 €3 = (Ae = At)/Ae 3+ P =
ultimate load (Fig. 1); D = ductility = P/Pr
(see Fig. 1); A = toughness = area under
load—deflection curve as defined in Fig. 13 and
subscripts "e” and "t" represent “experiment”
and “theory," respectively,

The error function derived above is an
objective measure of how well the model fits the
experimental data. The error function should
be minimized in the N-parametric space.
Nonlinear programming techinques can be used for
this purpose. The nature of the present study
suggests that the minimum point lies in the
interior of the feasible region of the parameter

. space rather than on its bondary, and thus



unconstrained nonlinear programmings suit this
problem.

An iterative minimization algorithm was used
in the related unconstrained nonlinear
programming approach., The algorithm must be
able to converge to a stationary point in the
global sense and should also converge rapidly

when it is in the neighborhood of a local
minimum (Luenberger 1973). The iterative
minimization approach adopted in this
investigation is described below. Starting

from the point in the parameter space selected
after k steps (xk), choose the next point as
follows:

Xk+#1 = Xk + p+d (2)
vhere d = direction search vector: and §t = step
length. Individsal methods vary in their
choice of u and d and this choice in general
determines the efficiency of the method.
Calculation of the gradient numerically rather
than analytically may be desirable or even
necessary. As the calculation of partial
derivatives of a given function is, in general,
at least as complicated as calculation of
function itself, a method which avoids the
calculation of derivatives has the possibility
of being more efficient as well as having the
advantage of being more convenient to use. One
such method has been given by Powell 19684, The
basic Powell's algorithm chosen for use in this
study is presented below and it is modified in
this study to properly choose the direction
vectors in order to avoid possible break down
due to linear dependency of the direction
vectors (refer to Walsh 1975 for details). The
kth jteration of this method starts with a
current point xk and n directions, dx.y, J =
1,2,--* n. At the beginning, x1 and di,5 are
assumed to be given,

1. Let yx.0 = xx

2. Find 34* which minimizes function f{yx, -1
+ Ay-d.j) and Tet yk.§ = vk, g-1 + Ag*-dk.s
for j=1,2, --- ,n.
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Fig. 1. Definitions of thréee different
criteria

3. Ltet 6k = yx,n - xx

4, Find An* which minimizes f(yx.n + An-8x) and
let xk+1 = yk n + An* Ok,

§. Let dk+1,5 = dx,y+1, J = 1,2, -+ ,0~1 and
dx+1.n = 6k. The direction dx,y is discarded
in favor of a new direction &k,

6. Go to step | and restart for (k+1)th step.

The ktb cycle which contains (n+1) subcycles
for finding minimum along the given direction is
schematically shown in Fig, 2 for n = 2, In
this figure, superscripts and subscripts
represent the subcycle number and iteration
number in a certain subcycle, respectively. In
Powell’s method, (n+1) line searches are needed
to generate one ocon jugate direction.
Therefore, to find the global minimum point
(assuming that the given function is quadratic
and positive definite) a total of n(n+1) line
searches are required. Since in the Powell’s
method, the error function is being approximated
by a quadratic function, it seems to be
appropriate to use quadratic line search, In

the present study, the method of quadratic line
search described by Powell (Powell 1964) has
been used.

2. SELECTION OF PARAMETERS

The flexural mode] containes ten
material-related and ten constitutive
behavior-related factors (Fig. 3). . The
variations in some of these factors have

significant effects on the behavior of SFRC
under flexure, while variations in other factors
result in negligible effects on .the flexural
behavior of SFRC. Since it is not practical to
optimize all these factors in the process of
“System Identification, ” factors whose
variations result in significant effects on the
flexural behavior of SFRC need to be selected as
the "System Identification® parameters.

Soroushian and Lee (Soroushian and Lee 1990)

have examined the influence of each factor on
flexural

the flexural peak load (P), ductility
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Fig. 2. Main theorems in Powell’s Algorithm for n = 2



(D), flexural toughness (A) and overall flexural
behavior of SFRC which was descaribed by
combination of P,D and A defined above. It was
observed that in the case of material-related
factors, the fiber peak pull-out strength (vu),
fiber diameter (dt), fiber 1length (1), fiber
volume fraction (Vr), matrix tensile strength (o
s'), and fiber slip at residual pull-out
strength (Sr) are the most influential factors
deciding the flexural behavior of SFRC. As far
as the constitutive behavior-related factors are
concerned, it was shown that their effects are
negligible when compared with those of the
material-related factors (Soroushian and Lee
1990).

Among the six influential material-related
factors, those representing fiber dimensions
(i.e., dr and 1¢) as well as the volume fraction
of fibers (V) should be known inputs while
analyzing some flexural test data obtained for
SFRC. This further reduces the number of
“System Identification” parameters and leaves
only three material-related factors to be
entered as parameters in “System
Identification:” fiber peak pull-out strength
(ru), fiber slip at residual pull-out strength
(Sr) and matrix tensile strength (ow’). It is
worth mentioning that the tensile streanth of
SFRC can be determined once the values of these
three factors are obtained through analysis of
flexural results using "System Identification.”

3. RESULTS OF “SYSTEM IDENTIFICATION"

Table t summarizes conditions of the SFRC
flexural tests considered for “System
Identification,” and also presents the optimized
values of the three main parameters obtained
from "System Identification.” Figa. 4
illustrates some typical comparisons between the
experimentally tained and theoretically
optimized flexural load—deflection curves.
Satisfactory correlations are observed in these
figures. From Table 1, the optimized values of
three parameters are found to be larger than the
values obtained from direct tension and material
tests (see the comparison presented in Tabel 2).
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The experimental data presented in Table 2 are
the averages obtained from several direct
tension and fiber pull-out test performed on
materials comparable to those used in flexual
tests. The matrix tensile strength (om') and
performance of fibers obtained from the analysis
of flexural test results may be improved in
comparison with those obtained from direct
tension and pull-out tests due to the strain
gradient effects under flexural loading
condition, which generally lead to inproved
tensile performance of the material (Swamy et
al. 1974). The improvements in pull-out
performance in fleuxural test specimens over
those obtained from single fiber pull-out tests
may also be attributed to the positive effects
of fiber reinforcement at the surrounding matrix
(noting that single fiber pull-out tests are

generally  conducted  using non—f i brous
surrounding matrices) in flexural test
specimens. Swamy et al, 1974, using an

analysis of experimental data, has also reported
increase in pull-out strength under flexure when
compared with pull-out strength under tension.

Large variations in the values of parameters
(tu, ow', and Sr) obtained from “System
Identification”™ in Table 1 suggest that the
highly variable (and unreliable) measurements of
flexural deflections in the pre-peak region have
some influence on the analysis of flexural test
data using the "System Identification” approach,
These variations may also partly result from the
fact that some flexural test results reported in
the literature were not accompanied by reliable
information on basic material properties and
thys some assumptions had to be made on these
properties throush the course of “System
Identification.”

4. CONCLUSION

An analysis of the results indicated that:

(1) The improvements in pull-out performance
in flexural tests over those obtained from
single fiber pull-out tests (where fibers are
generally pulled out of non-fibrous matrices)
may also be attributed to the positive effects
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of fiber reinforcement of the surrounding matrix
in flexural test specimens.

(2) The matrix tensile streanth (oa’) and
pull-out performance of fibers obtained from the
analysis of flexural test results were superior
to those obtained from direct tension and
pull-out tests. This may be attributed to the

positive effect of strain gradient under
flexural loads. .
(3) Large variations were observed in the

values of parameters (Tu, ou’ and Sr) obtained
from “System Identification.” This could
result from both unreliable measurements of
flexural deflections in the pre-peak region in
same test results reported in the literature,
and also from the lack of information on some
basic material properites for flexural tests
conducted by other investigators.
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