• Title/Summary/Keyword: Conic sections

Search Result 25, Processing Time 0.021 seconds

The Approximate Realization of Ab$\={u}$ Sahl's Geometric Construction about a Heptagon through GSP using Conic Sections (이차곡선을 활용한 정칠각형에 관한 Ab$\={u}$ Sahl의 작도법의 GSP를 통한 재조명)

  • Kim, Hyang-Sook;Pak, Jin-Suk;Ha, Hyoung-Soo
    • The Mathematical Education
    • /
    • v.50 no.2
    • /
    • pp.233-246
    • /
    • 2011
  • The geometry field in the current high school curriculum deals mainly with analytic geometry and the reference to logic geometry leaves much to be desired. This study investigated the construction on a heptagon by using conic sections as one of measures for achieving harmony between analytic geometry and logic geometry in the high school curriculum with the Geometer's Sketchpad(GSP), which is a specialized software prevalent in mathematics education field and is intended to draw an educational suggestion on it.

The reinterpretation and the visualization of Apollonius' symptoms on conic sections (원뿔곡선에 관한 Apollonius의 Symptoms 재조명과 시각화)

  • Kim, Hyang Sook;Pak, Jin Suk;Ha, Hyoung Soo
    • The Mathematical Education
    • /
    • v.52 no.1
    • /
    • pp.83-95
    • /
    • 2013
  • The purpose of this paper is to explain and reinterprets Apollonius' Symptoms on conic sections based on the current secondary curriculum of mathematics, present the historical background of Apollonius' Symptoms to teachers and students and introduce visualization proof of Apollonius' symptoms on a parabola, a hyperbola and an ellipse by a new method using dynamic geometry software(GSP) respectively.

The reinterpretation and visualization about trisecting general angle in Medieval Islam using conic sections (원뿔곡선을 이용한 중세 이슬람의 일반각의 3등분문제의 재조명과 시각화)

  • Kim, Hyang Sook;Kim, Mi Yeoun;Park, Jae Hyun
    • East Asian mathematical journal
    • /
    • v.35 no.2
    • /
    • pp.141-161
    • /
    • 2019
  • The purpose of this paper is to reinterpret and visualize the trisection line construction of general angle in the Medieval Islam using conic sections. The geometry field in the current 2015 revised Mathematics curriculum deals mainly with the more contents of analytic geometry than logic geometry. This study investigated four trisecting problems shown by al-Haytham, Abu'l Jud, Al-Sijzī and Abū Sahl al-Kūhī in Medieval Islam as one of methods to achieve the harmony of analytic and logic geometry. In particular, we studied the above results by 3 steps(analysis, construction and proof) in order to reinterpret and visualize.

SOME CHARACTERIZATIONS OF CONICS AND HYPERSURFACES WITH CENTRALLY SYMMETRIC HYPERPLANE SECTIONS

  • Shin-Ok Bang;Dong Seo Kim;Dong-Soo Kim;Wonyong Kim
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.211-221
    • /
    • 2024
  • Parallel conics have interesting area and chord properties. In this paper, we study such properties of conics and conic hypersurfaces. First of all, we characterize conics in the plane with respect to the above mentioned properties. Finally, we establish some characterizations of hypersurfaces with centrally symmetric hyperplane sections.

MINIMAL SURFACES IN ℝ4 FOLIATED BY CONIC SECTIONS AND PARABOLIC ROTATIONS OF HOLOMORPHIC NULL CURVES IN ℂ4

  • Lee, Hojoo
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • Using the complex parabolic rotations of holomorphic null curves in ℂ4 we transform minimal surfaces in Euclidean space ℝ3 to a family of degenerate minimal surfaces in Euclidean space ℝ4. Applying our deformation to holomorphic null curves in ℂ3 induced by helicoids in ℝ3, we discover new minimal surfaces in ℝ4 foliated by hyperbolas or straight lines. Applying our deformation to holomorphic null curves in ℂ3 induced by catenoids in ℝ3, we rediscover the Hoffman-Osserman catenoids in ℝ4 foliated by ellipses or circles.

How To Teach The Quadratic Curves Through Historical Overview (역사적 고찰을 통한 이차곡선의 지도방안)

  • Jang, Mi-Ra;Kang, Soon-Ja
    • Communications of Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.731-744
    • /
    • 2010
  • Nowadays in school mathematics, the skill and method for solving problems are often emphasized in preference to the theoretical principles of mathematics. Students pay attention to how to make an equation mechanically before even understanding the meaning of the given problem. Furthermore they do not get to really know about the principle or theorem that were used to solve the problem, or the meaning of the answer that they have obtained. In contemporary textbooks the conic section such as circle, ellipse, parabola and hyperbola are introduced as the cross section of a cone. But they do not mention how conic section are connected with the quadratic equation or how these curves are related mutually. Students learn the quadratic equations of the conic sections introduced geometrically and are used to manipulating it algebraically through finding a focal point, vertex, and directrix of the cross section of a cone. But they are not familiar with relating these equations with the cross section of a cone. In this paper, we try to understand the quadratic curves better through the analysis of the discussion made in the process of the discovery and eventual development of the conic section and then seek for way to improve the teaching and learning methods of quadratic curves.

Finite Raytracing Through Non-rotationally Symmetric Systems (비대칭형 광학계의 유한광선추적)

  • 홍경희
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.217-222
    • /
    • 1990
  • A general ray tracing scheme has been developed for using a personal computer which trace finite rays through any non-rotationally symmetric system. This scheme may be used for the surface type such as conic section with or without aspherics, toric surfaces, sagittal and tangential cylindrical sections and axicons. Specially, any combinational of decentered, tilted and rotated surfaces has been considered. Before transfering to the next surfaces, the local coordinates are refered back to an initial reference coordinate system. We can get a mathmtical model of a non-rotationally symmetrical finite ray trace running on an inexpensive personal computer.

  • PDF

Reinterpretation and visualization of Omar-Khayyam's geometric solution for the cubic equation - 6 cases of the cubic equation with 4 terms - (삼차방정식에 관한 Omar Khayyām의 기하학적 해법의 재해석과 시각화 - 항이 4개인 삼차방정식의 6가지 -)

  • Kim, Hyang Sook;Kim, Mi Yeoun;Sim, Hyo Jung;Park, Myeong Eun
    • East Asian mathematical journal
    • /
    • v.37 no.4
    • /
    • pp.499-521
    • /
    • 2021
  • This research is devoted to investigate Omar Khayyām's geometric solution for the cubic equation using conic sections in the Medieval Islam as a useful alternative connecting logic geometry with analytic geometry at a secondary school. We also introduce Omar Khayyām's 25 cases classification of the cubic equation with all positive coefficients. Moreover we study 6 cases with 4 terms of 25 cubic equations and in particular we reinterpret geometric methods of solving in 2015 secondary Mathematics curriculum and visualize them by means of dynamic geometry software.

The reinterpretation and visualization for methods of solving problem by Khayyam and Al-Kāshi for teaching the mathematical connection of algebra and geometry (대수와 기하의 수학적 연결성 지도를 위한 Khayyam과 Al-Kāshi의 문제 해결 방법 재조명 및 시각화)

  • Kim, Hyang Sook;Park, See Eun
    • East Asian mathematical journal
    • /
    • v.37 no.4
    • /
    • pp.401-426
    • /
    • 2021
  • In order to propose ways to implement mathematical connection between algebra and geometry, this study reinterpreted and visualized the Khayyam's geometric method solving the cubic equations using two conic sections and the Al-Kāshi's method of constructing of angle trisection using a cubic equation. Khayyam's method is an example of a geometric solution to an algebraic problem, while Al-Kāshi's method is an example of an algebraic a solution to a geometric problem. The construction and property of conics were presented deductively by the theorem of "Stoicheia" and the Apollonius' symptoms contained in "Conics". In addition, I consider connections that emerged in the alternating process of algebra and geometry and present meaningful Implications for instruction method on mathematical connection.

A study on Development of Mathematics Teaching and Learning Platform Model using NAS (NAS 서버를 활용한 수학 교수·학습 플랫폼 모델 개발 연구)

  • Kim, Tae Jung;Huh, Nan
    • East Asian mathematical journal
    • /
    • v.39 no.4
    • /
    • pp.419-436
    • /
    • 2023
  • In this study, we aimed to develop a teacher-adaptive platform model that enhances teachers' instructional activities and teaching capabilities, allowing them to conduct intended lessons effectively. The platform is designed to support various teaching and learning activities based on the instructional situation, and additionally provides teaching and learning materials, assessment questions, and results. The developed teaching and learning platform utilized Moodle, an open-source-based LMS solution that provides various tools for online learning. The platform was specifically designed for teaching conic sections in high school geometry, and it was constructed to enable teachers to deliver their intended lessons effectively.