• 제목/요약/키워드: Computational Flow Analysis(CFD)

검색결과 1,004건 처리시간 0.028초

워터제트 선박추진용 사류펌프의 설계 및 성능해석 (Design and Performance Analysis of Mixed-Flow Pumps for Waterjet Marine Propulsion)

  • 윤의수;오형우;안종우
    • 한국유체기계학회 논문집
    • /
    • 제6권2호
    • /
    • pp.41-46
    • /
    • 2003
  • The hydraulic design optimization and performance analysis of mixed-flow pumps for waterjet marine vehicle propulsion has been carried out using mean streamline analysis and three-dimensional computational fluid dynamics (CFD) code. In the present study, the conceptual design optimization has been formulated with a non-linear objective function to minimize the fluid dynamic losses, and then the commercial CFD code was incorporated to allow for detailed flow dynamic phenomena in the pump system. Newly designed mixed-flow model pump has been tested in the laboratory. Predicted performance curves by the CFD code agree very well with experimental data for a newly designed mixed-flow pump over the normal operating conditions. The design and prediction method presented herein can be used efficiently as a unified hydraulic design process of mired-flow pumps for waterjet marine vehicle propulsion.

CFD를 사용한 터보기계 비접촉식 실의 누설량 예측 (Prediction of Non-Contact-Type Seal Leakage Using CFD)

  • 하태웅
    • 한국유체기계학회 논문집
    • /
    • 제9권3호
    • /
    • pp.14-21
    • /
    • 2006
  • Leakage reduction through annular type seals of turbomachinery is necessary for enhancing their efficiency and the precise prediction method of seal leakage is needed. The analysis based on Bulk-flow concept has been mainly used in predicting seal leakage. However, full Navier-Stokes Equations with turbulent model derived in the seal flow passage have to be solved for improving the prediction of seal leakage. FLUENT 6 which is commercial CFD(Computational Fluid Dynamics) code based on FVM(Finite Volume Method) and SIMPLE algorism has been used to analyze leakage of various non-contact-type seals in this presentation. Comparing with the results of Bulk-flow model analysis and experiment, the result of CFD analysis shows good agreement with that of existing theoretical analysis for the incompressible grooved seal and compressive plain and staggered seal. The CFD analysis also shows improvement on the leakage prediction of the incompressible plain seal and compressive see-through-type labyrinth seal.

구조 비전형성 및 충격파 간섭효과를 고려한 미사일 날개의 천음속 유체유발 진동특성 (Characteristics of Transonic Flow-Induced Vibration for a Missile Wing Considering Structural Nonlinearity and Shock Inference Effects)

  • 김동현;이인;김승호;김태연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.914-920
    • /
    • 2002
  • Nonlinear flow-induced vibration characteristics of a generic missile wing (or control surface) are investigated in this study. The wing model has freeplay structural nonlinearity at its pitch axis. Nonlinear aerodynamic flows with unsteady shock waves are considered in the transonic flow region. To practically consider the effects of freeplay structural nonlinearity, the fictitious mass method (FMM) is applied to structural vibration analysis based on a finite element method (FEM). A computational fluid dynamics (CFD) technique is used for computing the nonlinear unsteady aerodynamics of all-movable wings. The aerodynamic analysis is based on the efficient transonic small-disturbance aerodynamic equations of motion using the potential-flow theory. To solve the nonlinear aeroelastic governing equations including the freeplay effect, a modal-based computational structural dynamic (CSD) analysis technique based on fictitious mass method (FMM) is used in time-domain. In addition, CSD and unsteady CFD techniques are simultaneously coupled to give accurate computational results. Various aeroelastic computations have been performed for a generic missile wing model. Linear and nonlinear aeroelastic computations have been conducted and the characteristics of flow-induced vibration are introduced.

  • PDF

예조건화 Navier-Stokes 코드를 이용한 교각 유동해석 (The analysis of flow over the bridge using preconditioned Navier-Stokes code)

  • 유일용;이승수;박시형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.13-16
    • /
    • 2008
  • After the collapse of the Tacoma bay bridge at Tacoma Washington, the accurate prediction of aerodynamics became crucial to the sound design of bridges. CFD(Computational Fluid Dynamics) becomes important tool for the prediction on wind effects on the bridge due to the recent development of CFD. The usage of CFD is further prompted by the advantages in using CFD, such as low-cost and fast feed-back of design. In this paper, an unsteady compressible Reynolds averaged Navier-Stokes code is used for the computation of the flow over bridges. Coakley's ��q-${\omega}$ �� two-equation turbulence model is used for the turbulent eddy viscosity. For accurate and stable computations, the local preconditioning method is adapted to the code. Aerodynamic characteristics of a couple bridges are presented to show the validity and the accuracy of the method.

  • PDF

다양한 PC 클러스터 시스템 환경에서 CFD 코드의 성능 분석 (Performance Analysis of a CFD Code in Several PC Cluster Systems)

  • 조금원;홍정우;이상산
    • 한국전산유체공학회지
    • /
    • 제6권2호
    • /
    • pp.47-55
    • /
    • 2001
  • In recent years cluster systems using off-the-shelf processors and networks components have been increasing popular. Since actual performance of a cluster system varies significantly for different architectures, representative in-house codes from major application fields were executed to evaluate the actual performance of systems with different combination of CPU, network, and network topology. As an example of practical CFD(Computational Fluid Dynamics) simulations, the flow past an Onera-M6 wing and the flow past an infinite wing were simulated on clusters of Linux and several other hardware environments.

  • PDF

Wind Environment Assessment around High-Rise Buildings through Wind Tunnel Test and Computational Fluid Dynamics

  • Min-Woo Park;Byung-Hee Nam;Ki-Pyo You;Jang-Youl You
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.321-329
    • /
    • 2022
  • High-rise buildings constructed adjacent to low-rise structures experience frequent damage caused by the associated strong wind. This study aimed to implement a standard evaluation of the wind environment and airflow characteristics around high-rise apartment blocks using wind tunnel tests (WTT) and computational fluid dynamics (CFD) simulations. The correlation coefficient between the CFD and wind tunnel results ranged between 0.6-0.8. Correlations below 0.8 were due to differences in the wake flow area range generated behind the target building according to wind direction angle and the effect of the surrounding buildings. In addition, a difference was observed between the average velocity ratio of the wake flow wind measured by the WTT and by the CFD analysis. The wind velocity values of the CFD analysis were therefore compensated, and, consequently, the correlations for most wind angles increased.

CFD해석을 이용한 축류형 혈액펌프의 용혈평가 및 형상개량에 관한 기초연구 (A Study on Shape Optimization and Hemolysis Evaluation of Axial Flow Blood Pump by Using Computational Fluid Dynamics Analysis)

  • 김동욱;임상필
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권1호
    • /
    • pp.57-64
    • /
    • 2004
  • 최근 심장질환에 의한 사망자 수는 놀랄 만큼 빠른 증가세를 보이고 있다. 인공심장은 혈액의 흐름에 따라 크게 박동류형과 무박동류형으로 나뉘며, 무박동류형 펌프는 비용적형으로 박동류형에 비해 소형화가 가능하다는 장점을 가지고 있다. 이러한 무박동류형 혈액펌프는 다시 구동방식에 따라 축류형과 원심형으로 구분되어지며, 그중 축류형 혈액펌프는 같은 무박동류형인 원심형 혈액펌프와 비교하였을 때 훨씬 간단한 구동장치와 제어장치를 가진다. 혈구가 파괴되어 헤모글로빈이 혈구 밖으로 빠져나가는 것을 용혈이라 하며 혈액이 응고하여 혈관을 막게되는 혈전현상은 이러한 용혈이 주된 원인이다. 따라서 혈액펌프가 구동함에 따라 발생하게 되는 용혈의 수치를 낮추는 것은 혈액펌프를 개발하는데 있어서 중요한 조건 중에 하나이다 이러한 용혈을 평가하기 위한 방법으로는 현재 in-vitro실험이 가장 널리 사용되어지고 있으나, 이러한 체외실험을 하기 위해선 상당한 비용과 장기간의 연구기간이 요구되어진다. 이러한 in-vitro실험의 단 전을 보완하기 위해 개발되어진 CFD해석법은, 엔지니어로 하여금 in-vitro실험을 실시하지 않고 용혈이 발생하는 지역과 용혈발생예측치를 추정할 수 있다. 본 연구의 목적은 in-vitro실험의 결과데이터와 CFD해석의 예측결과데이터의 여러 가지 비교를 통해 CFD해석의 정확성을 검증하고, 또한 이러한 정확성이 검증된 CFD해석법을 현재 개발되어지고 있는 축류형 혈액펌프의 개발단계에 적용하기 위함이다.

습식 배연탈황 시스템의 효율 향상을 위한 전산해석 (Computational Fluid Dynamic Analysis for Improving the Efficiency of Desulfurization System for the Wet Flue Gas)

  • 황우현;이경옥
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권2호
    • /
    • pp.161-171
    • /
    • 2014
  • 본 논문에서는 CFDRC 사의 상용 CFD 소프트웨어인 CFD-ACE+로 전산유체역학 기법을 적용하여 수치 해석을 수행하여 배연탈황 설비에서 Induced Draft Fan(I.D.Fan) 출구부터 Booster Up Fan(B.U.Fan) 입구까지 난류 유동장과 연소 유동 문제를 모사하여 배기가스 계통 설비의 유동 특성을 해석하였다. 배기가스가 I.D.Fan 출구 ~ B.U.Fan 입구 구간을 적정속도로 균일하게 유동하여 B.U.Fan로 균일하게 유입되도록 하며 압력손실이 적게 발생하도록 설계기준 보일러 부하와 최대연속 정격유량의 보일러 부하에서 이 구간의 안내깃을 검토하였다. 검토한 결과에 대해 CFD 해석을 수행하여 I.D.Fan 출구에서 안내깃을 제거하고 B.U.Fan 입구 전에 안내깃을 보강할 수 있도록 설계를 변경하였다. 배기가스 계통에 변경된 설계를 적용하여 수치모사한 결과에서 배연탈황 설비 내부의 배기가스 압력손실이 줄어들고 유속과 유선이 균일하게 유동할 수 있어 배연탈황 시스템의 효율이 향상한 것을 확인하였다.

마이크로 모세관 유동 해석을 위한 CFD-VOF 모텔 응용 (Application of CFD-VOF Model to Autonomous Microfluidic Capillary System)

  • 정자훈;임예훈;한상필;석지원;김영득
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.224-229
    • /
    • 2004
  • The objective of this work is not only to perform feasibility studies on the CFD (computational fluid dynamics) analysis for the capillary system design but also to provide an enhanced understanding of the autonomous capillary flow. The capillary flow is evaluated by means of the commercial CFD software of FLUENT, which includes the VOF (volume-of-fluid) model for multiphase flow analysis. The effect of wall adhesion at fluid interfaces in contact with rigid boundaries is considered in terms of static contact angle. Feasibility studies are first performed, including mesh-resolution influence on pressure profile, which has a sudden increase at the liquid/gas interface. Then we perform both 2D and 3D simulations and examine the transient nature of the capillary flow. Analytical solutions are also derived for simple cases and compared with numerical results. Through this work, essential information on the capillary system design is brought out. Our efforts and initial success in numerical description of the microfluidic capillary flows enhance the fundamental understanding of the autonomous capillary flow and will eventually pave the road for full-scale, computer-aided design of microfluidic networks.

  • PDF

전산유체해석을 이용한 축류형 혈액펌프의 용혈평가 (Evalution of Hemolysis in Axial Flow Blood Pump with Computational Fluid Dynamics Analysis)

  • 임상필;김동욱
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 춘계학술발표논문집
    • /
    • pp.256-259
    • /
    • 2003
  • Artificial heart is divided pulsation style and nonpulsation style greatly according to flowing of blood. nonpulsation pump is advantage of miniaturization avaliable because it is simple and non-volumic-pump than pulsation pump. Non pulsation pump is derided axial flow style and centrifugal style accordig to rotating style. An axial flow blood pump can be made smaller than a centrifugal blood pump because of its higher specific speed. A hemolysis is an important factor for the development of an axial flow blood pump. It is difficult to identify the areas where hemolysis nun. Evaluation of hemolysis both in in vitro and in vivo require a long time and are costly. Computational fluid dynamics(CFD) analysis enables the engineer to predict hemolysis on a computer. The aims of this study is Computational fluid dynamics in the whole axial flow pump and to verify the accuracy of prediction results of CFD analysis compare with in vitro experimental results.

  • PDF