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Characteristics of Transonic Flow-Induced Vibration for a Missile Wing
Considering Structural Nonlinearity and Shock Inference Effects
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ABSTRACT

Nonlinear flow-induced vibration characteristics of a generic missile wing (or control surface) are investigated
in this study. The wing model has freeplay structural nonlinearity at its pitch axis. Nonlinear aerodynamic flows
with unsteady shock waves are considered in the transonic flow region. To practically consider the effects of
freeplay structural nonlinearity, the fictitious mass method (FMM) is applied to structural vibration analysis based
on a finite element method (FEM). A computational fluid dynamics (CFD) technique is used for computing the
nonlinear unsteady aerodynamics of all-movable wings. The aerodynamic analysis is based on the efficient
transonic small-disturbance aerodynamic equations of motion using the potential-flow theory. To solve the
nonlinear aeroelastic governing equations including the freeplay effect, a modal-based computational structural
dynamic (CSD) analysis technique based on fictitious mass method (FMM) is used in time-domain. In addition,
CSD and unsteady CFD techniques are simultaneously coupled to give accurate computational results. Various
aeroelastic computations have been performed for a generic missile wing model. Linear and nonlinear aeroelastic

computations have been conducted and the characteristics of flow-induced vibration are introduced.

1. Introduction

Flutter (typical flow-induced vibration of high-speed
aero-vehicle wings) calculations are generally performed
with the assumption of a linear acrodynamic and linear
structural model. However, there are two typical
nonlinearities in general high-speed aeroelastic problems.
One is aerodynamic nonlinearity and the other is
structural nonlinearity. Aerodynamic nonlinearities can
be attributed to shock waves, separated turbulence flow,
vortex interaction, etc. Structural nonlinearities are
subdivided into  distributed nonlinearities and
concentrated ones. Distributed nonlinearities are spread
over the entire structure like material and geometric
nonlinearities. However, concentrated nonlinearities
have local effects in a control mechanism or an
attachment of external stores. The concentrated structural
nonlinearities typically include freeplay, friction, bilinear
spring, hysteresis, and preload. Concentrated structural
nonlinearities can be normally generated from worn and
loose phenomena of control surface connections,
manufacturing tolerances, etc. Among all these several
nonlinearities, the freeplay tends to give the most critical
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aeroelastic instabilities. In addition, during the service
life of a flight vehicle, the level of freeplay will normally
increase due to wear of bearings. Thus, most flight
vehicles may inherently have this kind of concentrated
structural nonlinearities. To date, there have been a few
predominant studies on aeroelastic problems of three-
dimensional wings with concentrated structural
nonlinearities.!* Even though, computational studies
including both the structural nonlinearity and the
aerodynamic nonlinearity related to shock waves can
hardly be found.

The influence of the freeplay on the wing flutter
characteristics can be also emphasized in the transonic
and supersonic flow regions with shock waves. In
addition, development of an accurate and effective
computation technique is important in a design process.
The focus of this paper is to show the freeplay effects on
nonlinear aeroelastic characteristics of an all-movable
wing with shock wave interferences. Because of the
sweptback planform shape, both the bending and torsion
frequencies and mode shapes are affected by the pitch
actuator stiffness. To effectively consider the effects of
freeplay structural nonlinearity, a fictitious mass method
(FMM)>6 is applied to structural vibration analysis
based on finite element method (FEM). Nonlinear
unsteady aerodynamics is also considered in transonic
and supersonic flow regions. The TSD3KR code’? based
on the transonic small-disturbance equation was used to
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efficiently compute the transonic and supersonic

aerodynamics. Computational structural dynamic (CSD)
analyses have been performed using a finite element
method. For the solution of the nonlinear aeroelastic
governing equations, a modal-based computational
structural dynamic (CSD) analysis technique based on
FMM is used in time-domain. It simultaneously coupled
with unsteady CFD technique to give accurate simulation
results. Nonlinear aeroelastic time responses are
computed by this simultaneous coupled time-integration
method (CTIM). Various aeroelastic computations have
been performed and the results are presented and
compared with a linear structural case. From the present
study, it is typically shown that the effect of freeplay
nonlinearity tends to strongly decrease the aeroelastic
stability of an all-movable missile wing in high-speed
flows with strong shock interferences.

2. Theoretical Background

2.1 Normal Mode Analysis Using FMM

In nonlinear aeroelastic problems with concentrated
structural nonlinearities, structural properties are varying
as the displacement changes. Hence, using a constant
normal mode from a fixed structural model gives
inaccurate results. To overcome this kind of problem, the
fictitious mass method (FMM) proposed by Karpel®- is
applied in this study. Neglecting the effect of structural
damping, free vibration (air off) equation of motion of an
n degrees-of-freedom system with fictitious masses
(FMs) can be given as

(M +M i)} +[K]{u()} = {0} M
where the fictitious masses is added to the corresponding
degrees-of-freedom where structural changes occur. This
means that the elements of the fictitious mass matrix
[Mj] are zero, except for the terms added to the structure

at the locations of subsequent large structural variations.
From the normal mode analysis using a finite element
method, the generalized mass and stiffness matrix are
given as

[GM,1=[¢,]"[M+M,][¢,)] @

[GK,1=[¢,T[K1l¢,1=[0}][GM ] ©)

where [®7] is a diagonal matrix of the natural frequencies

including zero frequencies for rigid-body modes. Here,
the size of generalized matrices directly depends on the
selected number of fictitious natural vibration mode for
further analysis.

It is known that the fictitious mass modes can serve as
a constant set of generalized coordinates for a wide range
of structural variations in the vicinity of the applied
fictitions masses. Thus, it can be assumed that the

displacement vector {u} of an actual nonlinear system
can be expressed as a linear combination of the fictitious
mass modes as follows:

{ut=[¢,1q,} @
Using above transformation equation, we can drive
the following normalized eigenvalue problem

[6,1 (M~ M, 18,14, () "

+[8,1 (K +AK](g, 1{a, ()} = {0}

or
(AGM )-8, 1M 14, DG (e}
+((GK  1+[¢, " [AK1[, Dig (2} = {0}

From above equations, we can obtain the natural
frequencies, [w,]=[®,], of the actual structure with local

stiffness variations (without fictitious masses) and the
base square eigenvector matrix, [y,]. Since an all

movable wing is considered in this study, the stiffness
variations at the pitch (or spindle) axis is just considered.
Here, the accuracy of the obtained natural frequencies
tends to dominantly depend on the scale of (M.
Generally, a large positive value of [M] is recommended
unless arising numerical singularity problems in
calculating the eigenvalue solution of Eq. (1). By
conducting some trial and error computations, we can
find an appropriate value of [Mf] giving a converged
solution. The fictitious masses need to facilitate wide
ranges of stiffness variations have to be significantly
larger than the corresponding nominal masses of
attaching nodal points.

For computational convenience, let us define the
following base modal matrix as

[¢b]=[¢/][fb] Y

where [7,] is a mass normalized square eigenvector
matrix of [y,] and satisfies the following relation.

(7,1 (GM1-[¢,1 Mg, DIZ,1=[11  (®

2.2 Nonlinear Aeroelastic Modeling

The aeroelastic equations of motion for an elastic wing
with concentrated structural nonlinearity is written as
follows:

(MG} +[CURal}+ (RN = {Fle, i)} (9)

where {K(u)] is nonlinear stiffness matrix which is a
function of displacement. For piecewise nonlinearity,
nonlinear stiffness matrix can be written as follows:

[R@)]=[KLI{u} +{f (2)} (10)
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where [KL] is a linear stiffness matrix of the all movable
wing without pitch freeplay stiffness, and {f{a)} is the
nonlinear restoring force vector whose element are zero
except for nonlinear element. For a freeplay nonlinearity,
{f{e)} is given as follows:

K, (a - s), a>s
fla)= 0, -s<a<s an
K a+s), a<-s
where o is a pitch displacement and s is a magnitude of
freeplay angle. Let’s introduce the following
transformation relation based on the FMM.
{u(@®)} =14, {a(®)} (12)

Using Eq. (12), the governing aeroelastic equation of
motion can be reformulated in terms of generalized
displacement vector {g(z)} which is a solution of the
following equation:

[M, Ka(h+1C, Mg+ R, ()= {0(t,9.9)}
where
[M,1=[¢, ] [M]Ig;]
=[Z,1 (GM 14,1 (M, ], DIZ,]
[C,1=14,1T[Clig, 1= 24, l[®,]
[R, ()=1¢,1 [KL1[g,]+[8,)" {f ()}
=12, [GK 112, 1+[4, ) {f (@)}
(O =18, (. V)V (Flx, .1}, 16,1=[Gyg )4

Here, [Gy,] is a transformation matrix for surface spline
of modal matrix from FEM node to CFD grid. {F} is the
external force vector due to unsteady aerodynamic flows
around a wing. It is computed on the CFD grids of the
wing surface and can be obtained by integrating the
instantaneous unsteady pressure distributions as

(13)

= 1 ds
F(x’y’t)= 'z_meicf J.j(CpL (x’y’t)‘" CPU(x’y’t)):‘z—(14)
N r

In Eq. (14), unsteady pressure coefficients, Cp, are
directly computed from TSD aerodynamic analyses,
which are simultaneously coupled with Eq. (13). Then,
the unsteady aerodynamic forces for each cell area (Eq.
(14)) are numerically integrated using a two-point
Gaussian quadrature formula. In this study, to fully
consider the characteristics of aeroelastic responses, the
coupled-time integration method (CTIM) has been used.

Introducing the state vector {x} to perform the
efficient numerical calculation, Eq. (3) can be written in
the first order form as
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{x()} =[AI{x()} + [Bl{u()} (15)
where

[0] [1]
[A]= -1 T _ -1
=M 2 [GK 2] —-[M,TIC,]

[B]=[ o] {u(t)}={ © }

1|, 001,17 1/ @)
_ a0}

w0} = {{qm}}

Generally, to calculate the time response of Eq. (5) due
to the initial condition, external forces or control inputs
are needed to analyze the behavior of the system. For the
nonlinear aeroelastic systems, the 5® order Runge-Kutta
algorithm can be typically used for accuracy.

2.3 Time-Domain Unsteady Aerodynamics
Nonlinear Aerodynamic Theory

The modified transonic small disturbance (TSD)
potential equation transformed into the computational
domain can be written in the strong conservation form as

oM’ 2

_5.1_[ 3 ¢, +2M ¢5}

2 [(1—M’)§ b —~(r+OMPEG
6§ xVE 9 x¥Y¢&

+%<y—3)M2(¢y¢¢- +4, ) +—§i(5y¢¢ +4,)

~(r-DME,8.( 8, + 6, )} (16)
F) [ 1
+—|-=
on| &,
0|1

e

ocl| &,

(0 +6,)-r-DM6.(6 6. +4,) J

¢g:|=0

where M is a freestream Mach number, ¢ is the small-
disturbed potential and 7 is the nondimensional time.
Here, ¢ and 7 are normalized as the reference chord
length and freestream velocity, respectively. In Eq.
(16), &, n, and {'represent the axes in the computational
domain, which correspond to x-, y- and z-axes in the
nondimensional physical coordinates of the streamwise,
spanwise, and vertical directions, respectively. The
small-disturbed potential, ¢, is defined from the full
potential ® as

O(x,y,7,0)=U_c [x+d(x,y,2,7)]

+

a7
In this study, the physical dimensions X,
are nondimensionalized as

¥Y,Z and¢?
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cy=2, 2= Z 2t (18)
C C

r r

xX=

X
C ¥

Equation (19) is solved using a time-accurate
approximate factorization (AF) algorithm!2. The AF
algorithm consists of a time linearization procedure
coupled with internal subiterations. After Eq. (16) is
written at the advanced time level n+l, internal
subiterations performed at each intermediate time (*)
levels.

oR[" .
Ag=—R
2% ¢ (@)
where A¢=¢"*!-¢+ and if Ag approaches to zero then ¢+
is equal to ¢"*/. The left side of Eq. (19) is then be
approximately factorized into the following three
operators:

(19

LL L AG=—R($" 4" 4" ,¢") (20)
where the operators are defined as
= o _a i(1-M,,
L§_1 2 éxaé 2 0”5( gx
—H+DE G+ -3E (E,0:+ ;) 1)
+E1-(r-1Dé4;)
- -DM’E, (& 8; + ¢”)) 22
Lo A o(1- (y—l)MZJ
" 2 o\ M’ on 22)
aro( 1Y@
T 23)
R= 2¢'_5¢n +24¢n—]_¢n——2
e, A,Z(M;";’E} 24)
AP D 1= M @AY sy
(7 3) *\2
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Detailed theoretical background and validation of the
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present study for the clean wing and the wing with
control surface can be found from Ref. 7. The
aerodynamic analysis results for more advanced
applications can also be found from Ref. 8.
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Fig. 1 Geometric configuration of a generic missile wing.

Table 1 Comparison of natural frequencies for the
all-movable wing model

Direct Model FM model

K =120 K =0 K =120
Mode N(:n/rad Nn(:/rad N‘:n/rad
1 73.9 Hz 0.0 Hz 73.9 Hz

2 127.5 Hz 96.2 Hz 127.5 Hz

3 382.9 Hz 3825Hz 3829Hz

4 4549 Hz 438.1Hz 4549Hz

5 692.1 Hz 6914Hz  692.1 Hz

6 956.5 Hz 9477Hz  956.1 Hz

3. Results and Discussion

As a numerical example, a typical all-movable missile
wing is considered for nonlinear aeroelastic simulations
with the shock wave effects. Fig. 1 shows the general
configuration of the present all-movable wing model.
The aspect ratio of the wing is 2.564, taper ratio is 0.5,
and swept-back angle of leading edge is 27.47 degree.
The wing section is assumed as 5% biconvex airfoil.
There is no aerodynamic twist but linear spanwise
thickness variation. The root chord thickness and tip
chord thickness are 3 mm and 1.5 mm, respectively. The
material of wing is aluminum alloy and its properties are
E=72.4 GPa, v=0.33 and ps=2713 kg/m3. The structural

model was built up from plate, rod, spring, and
concentrated mass elements. The wing is connected by a
spindle axis with a torsion spring. Natural vibration
analyses are performed using MSC/NASTRAN
(Ver.70.5). The plate, spring and fictitious mass are
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modeled as CQUADS, CMASS2 and CELAS?2 elements, Figure 3 shows the steady pressure distribution of the
respectively. Natural mode shape vectors are mass missile wing at M=0.3 and M=0.9. Here, one can see the
normalized in this study. The wing is divided by 4x4 normal shock wave on the wing surface at M=0.9.

using eight node element (CQUADS). It is experienced
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Fig. 4 Comparison of free vibration responses
(linear and nonlinear cases).
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Figure 4 shows the free vibration responses at wing tip.
Linear and nonlinear structural model are considered. To
validate FM method, two-different approaches (direct vs.
FM) are simultaneously compared and one can see very
good agreement. Nonlinear responses for various
freeplay angles are also presented to show the effect of
freeplay. Here, it can be shown that increasing the
freeplay angle, decreasing the frequency of a structural
response. This physically means the reduction of
equivalent stiffness.

Figure 5 shows neutral aeroelastic responses of a
linear structure model at M=0.3. For this low speed
Mach number no shock wave interference is expected.
Several computations have been conducted to find these
neutral responses. Its phase diagram also shows a typical
linearity of ideal circle shape. Figure 6 shows several
nonlinear aeroelastic responses in the transonic flow of
Mach 0.9. One can see typical limit cycle oscillations
(LCO) for several dynamic pressure conditions. In this
case, the freeplay angle is assumed as 0.2 deg and
generalized displacement of the first mode is imposed as
an initial condition. This case contains two kinds of
nonlinearities such as a freeplay and a transonic normal
shock wave.
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Fig. 6 Comparison of aeroelastic response for freeplay
model (M=0.9, 0o=0 deg, s=0.2 deg, q;(0)=0.0005).

Figure 7 shows the phase diagrams of nonlinear
aeroelastic responses at Mach 0.9. At low velocity of 132
m/s, the phase diagram seems to be an elliptic type with
weak nonlinearity. However, nonlinearity can be seen
from higher velocities. One can also see the increment of
oscillating amplitude according to an increased velocity.
It is a typical trend of the nonlinear limit cycle oscillation
due to flow-induced vibrations. Although not presented
in this paper, the phase diagrams of the tip trailing edge
(T.E) can be different from those of the tip leading edge
(L.E). For the present model, large differences were
observed at the cases of 136 and 140 m/s. It can be
emphasized that a detrimental transonic flutter
phenomenon may occur at very lower flight speed than
that of predicted by ignoring the effect of freeplay.
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Fig. 7 Comparison of aeroelastic phase diagrams (M=0.9,
0o=0 deg, s=0.2 deg, q,(0)=0.0005).

4. Concluding Remarks

In this study, a nonlinear aeroelastic analysis system
has been developed using multidisciplinary numerical
technologies. A generic missile control surface with ali-
movable pitch axis was considered to show the nonlinear
characteristics of transonic aeroelasticity. One can see
the successful and practical coupling of fictitious mass
method (FMM) to typical coupled-time marching
method (CTIM) using CFD. It is experienced from this
study that the use of DMAP module of MSC/NASTRAN
is needed to increase the numerical accuracy. Physically,
it is found that a freeplay can introduce more unstable
vibrations including limit cycle oscillations in the
transonic flow region. This importantly indicates that a
detrimental transonic flutter phenomenon can occur at
very lower flight speed than that of predicted by ignoring
the effect of freeplay. Thus, one has to pay attention to
and carefully consider the unusual reduction effect of
structural dynamic stability due to the freeplay
nonlinearity. The developed computational system can
be practically applied to the virtual flight test of
aeroelastic instability for a canard wing and an ali-
movable stabilizer of high-speed generic fighters.
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