• 제목/요약/키워드: Composite discharge capacity

검색결과 120건 처리시간 0.023초

The Electrochemical Performance of Li3V2(PO4)3/Graphene Nano-powder Composites as Cathode Material for Li-ion Batteries

  • Choi, Mansoo;Kim, Hyun-Soo;Lee, Young Moo;Jin, Bong-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권4호
    • /
    • pp.109-114
    • /
    • 2014
  • The $Li_3V_2(PO_4)_3$/graphene nano-particles composite was successfully synthesized by a facile sol-gel method. The addition of a graphene in $Li_3V_2(PO_4)_3(LVP)$(LVP) showed the high crystallinity and influenced the morphology of the $Li_3V_2(PO_4)_3$ particles observed in X-ray diffraction (XRD) and scanning electron microscopy (SEM). The LVP/graphene samples were well connected, resulting in fast charge transfer. The effect of the addition graphene nano-particles on electrochemical performance of the materials was investigated. Compared with the pristine LVP, the LVP/graphene composite delivered a higher discharge capacity of $122mAh\;g^{-1}$ at 0.1 C-rate, better rate capability and cyclability in the potential range of 3.0-4.3 V. The electrochemical impedance spectra (EIS) measurement showed the improved electronic conductivity for the LVP/graphene composite, which can ensure the high specific capacity and rate capability.

Germanium Nanoparticle-Dispersed Reduced Graphene Oxide Balls Synthesized by Spray Pyrolysis for Li-Ion Battery Anode

  • Kim, Jin Koo;Park, Gi Dae;Kang, Yun Chan
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.65-70
    • /
    • 2019
  • Simple fabrication of a powdered Ge-reduced graphene oxide (Ge-rGO) composite via spray pyrolysis and reduction is introduced herein. Successful incorporation of the rGO nanosheets with Ge hindered the aggregation of Ge and conferred enhanced structural stability to the composite by alleviating the mechanical stress associated with drastic volume changes during repeated cycling. The Li-ion storage performance of Ge-rGO was compared with that of powdered Ge metal. The reversible discharge capacity of Ge-rGO at the $200^{th}$ cycle was $748mA\;h\;g^{-1}$ at a current density of $1.0A\;g^{-1}$ and Ge-rGO showed a capacity of $375mA\;h\;g^{-1}$ even at a high current density of $5.0A\;g^{-1}$. The excellent performance of Ge-rGO is attributed to the structural robustness, enhanced electrical conductivity, and formation of open channels between the rGO nanosheets, which facilitated electrolyte penetration for improved Li-ion diffusion.

Synthesis and Electrochemical Properties of Li3V2(PO4)3-LiMnPO4 Composite Cathode Material for Lithium-ion Batteries

  • Yun, Jin-Shik;Kim, Soo;Cho, Byung-Won;Lee, Kwan-Young;Chung, Kyung Yoon;Chang, Wonyoung
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.433-436
    • /
    • 2013
  • Carbon-coated $Li_3V_2(PO_4)_3-LiMnPO_4$ composite cathode materials are first reported in this work, prepared by the mechanochemical process with a complex metal oxide as the precursor and sucrose as the carbon source. X-ray diffraction pattern of the composite material indicates that both olivine $LiMnPO_4$ and monoclinic $Li_3V_2(PO_4)_3$ co-exist. We further investigated the electrochemical properties of our $Li_3V_2(PO_4)_3-LiMnPO_4$ composite cathode materials using galvanostatic charging/discharging tests, where our $Li_3V_2(PO_4)_3-LiMnPO_4$ composite electrode materials exhibit the charge/discharge efficiency of 91.9%, while $Li_3V_2(PO_4)_3$ and $LiMnPO_4$ exhibit the efficiency of 87.7 and 86.7% in the first cycle. The composites display unique electrochemical performances in terms of overvoltage and cycle stability, displaying a reduced gap of 141.6 mV between charge and discharge voltage and 95.0% capacity efficiency after $15^{th}$ cycles.

미소구체를 이용한 3차원 Sn-C 복합체 제조 (Fabrication of 3-dimensional Sn-C Composites Using Microsphere)

  • 박보건;김석범;박용준
    • 한국전기전자재료학회논문지
    • /
    • 제23권9호
    • /
    • pp.741-746
    • /
    • 2010
  • Three-dimensionally ordered macro-porous Sn-C composites were prepared by using polystyrene microsphere as a template. The Sn-C composites were composed of well-interconnected pore with circular shape and wall structure with wall thickness of a few tens of nano-meters. This porous three-dimensional structure is readily and uniformly accessible to the electrolyte, which facilitates lithium ion diffusion during charge-discharge reactions. The wall thickness of the composites was increased as the increase of Sn content of the composite. From EDS analysis, it is confirmed that the Sn was dispersed uniformly in Sn-C composites. The capacity was increased as the Sn content increased, which is due to Sn anode with high capacity. The Sn-C composites with high Sn content showed superior cyclic performances. Such enhancement is ascribed to the thick wall thickness and small pore size of the sample with high Sn content. The Sn-C composite with Sn 30 wt% showed relatively high capacity and stable cycle life, however, the stability of the 3-dimensional structure should be enhanced by further work.

Electroactive Conjugated Polymer / Magnetic Functional Reduced Graphene Oxide for Highly Capacitive Pseudocapacitors: Electrosynthesis, Physioelectrochemical and DFT Investigation

  • Ehsani, A.;Safari, R.;Yazdanpanah, H.;Kowsari, E.;Shiri, H. Mohammad
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권4호
    • /
    • pp.301-307
    • /
    • 2018
  • The current study fabricated magnetic functional reduced graphene oxide (MFRGO) by relying on ${FeCl_4}^-$ magnetic anion confined to cationic 1-methyl imidazolium. Furthermore, for improving the electrochemical performance of conductive polymer, hybrid poly ortho aminophenol (POAP)/ MFRGO films have then been fabricated by POAP electropolymerization in the presence of MFRGO nanorods as active electrodes for electrochemical supercapacitors. Surface and electrochemical analyses have been used for characterization of MFRGO and POAP/ MFRGO composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. Prepared composite film exhibited a significantly high specific capacity, high rate capability and excellent cycling stability (capacitance retention of ~91% even after 1000 cycles). These results suggest that electrosynthesized composite films are a promising electrode material for energy storage applications in high-performance pseudocapacitors.

리튬이온 배터리용 음극 합금/폴리머 복합체 바인더 패브릭 (Fabrication of petroleum pitch/polymer composite binder for anode material in lithium-ion battery)

  • 정현택
    • 한국응용과학기술학회지
    • /
    • 제40권6호
    • /
    • pp.1191-1200
    • /
    • 2023
  • The lithium ion battery has applied to various fields of energy storage systems such as electric vehicle and potable electronic devices in terms of high energy density and long-life cycle. Despite of various research on the electrode and electrolyte materials, there is a lack of research for investigating of the binding materials to replace polymer based binder. In this study, we have investigated petroleum pitch/polymer composite with various ratios between petroleum pitch and polymer in order to optimize the electrochemical and physical performance of the lithium-ion battery based on petroleum pitch/polymer composite binder. The electrochemical and physical performances of the petroleum pitch/polymer composite binder based lithium-ion battery were evaluated by using a charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and universal testing machine (UTM). As a result, the petroleum pitch(MP-50)/polymer(PVDF) composite (5:5 wt % ratio) binder based lithium-ion battery showed 1.29 gf mm-1 of adhesion strength with 144 mAh g-1 of specific dis-charge capacity and 93.1 % of initial coulombic efficiency(ICE) value.

리튬이차전지용 음극활물질로서 Micro sized Silicon/CNT/Carbon 복합입자의 전기화학적 특성 (Electrochemical Performance of Micro Sized Silicon/CNT/Carbon Composite as Anode Material for Lithium Ion Batteries)

  • 신민선;이태민;이성만
    • 전기화학회지
    • /
    • 제22권3호
    • /
    • pp.112-121
    • /
    • 2019
  • 본 연구에서는 마이크로 크기의 실리콘 입자와 탄소나노튜브를 활용하여 고용량을 갖는 실리콘/탄소나노튜브/탄소 복합입자를 제조하여 리튬이차전지용 음극활물질로서의 적용가능성을 확인하고자 하였다. 실리콘/탄소나노튜브/탄소 복합입자 제조를 위해 분무건조 방식을 이용하여 실리콘입자가 탄소나노튜브에 의해 균일하게 분산되어 비정질탄소로 결합된 구조를 갖는 구형의 복합입자를 제조하였다. 제조한 복합입자는 실리콘 입자 주변에 탄소나노튜브의 네트워크 구조를 형성하며 비정질 탄소에 의해 실리콘 입자와 탄소나노튜브의 입자들이 결합한 상태를 유지하는 구조로 이루어진다. 이러한 복합입자의 구조적인 특성으로 인해 계속적인 충방전 과정에서 실리콘의 부피팽창이 효과적으로 완충되고 이에 따라 전기적 접촉 손실 및 SEI 막 형성에 따른 비가역 반응이 제어되어 우수한 수명 특성 및 충전출력 특성을 갖는 것으로 나타난다.

Li/$V_6O_{13}$ 2차전지의 제조 및 특성 (Preparation and Characteristics of Li/$V_6O_{13}$ Secondary Battery)

  • 문성인;정의덕;도칠훈;윤문수;염덕형;정목윤;박천준;윤성규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1992년도 추계학술대회 논문집
    • /
    • pp.136-140
    • /
    • 1992
  • The purpose of this research is to develop the lithium secondary battery. This paper describes the preparation, electrochemical properties of nontstoichiometric(NS)-$V_6O_{13}$ and characteristics of Li/$V_6O_{13}$ secondary battery. NS-$V_6O_{13}$ was prepared by thermal decomposition of $NH_4VO_3$ under Ar stream of 140ml/min~180ml/min flow rate. And then, this NS-$V_6O_{13}$ was used for cathode active material. Cathode sheet was prepared by compressing the composite of NS-$V_6O_{13}$, acetylene black(A.B) and teflon emulsion (T.E). Characteristics of the test cell are summarised as follows. Oxidation capacity of NS-$V_6O_{13}$ was about 20% less than its reduction capacity. A part of NS-$V_6O_{13}$ cathode active material showed irreversible reaction in early charge-discharge cycle. This phenomena seems to be caused by irreversible incoporation/discoporation of lithium cation to/from NS-$V_6O_{13}$ host. Discharge characteristics curve of Li/$V_6O_{13}$ cell showed 4 potential plateaus. Charge-discharge capacity was declined in the beginning of cycling and slowly increased in company with increasing of coulombic efficiency. Energy density per weight of $V_6O_{13}$ cathode material was as high as 522Wh/kg~765Wh/kg.

  • PDF

Ni-MH 전극용 $AB_2$계 수소저장합금의 볼밀링 처리에 의한 표면개질 연구 (Surface Modification of $AB_2$ Type Hydrogen Storage Alloys by Ball Milling for Ni-MH Battery)

  • 문홍기;박충년;유정현;박찬진;최전
    • 한국수소및신에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.418-424
    • /
    • 2006
  • In order to improve the activation properties of the $AB_2$ type hydrogen storage alloys for Ni-MH battery, the alloy surface was modified by employing high energy ball milling. The $Zr_{0.54}Ti_{0.45}V_{0.54}Ni_{0.87}Cr_{0.15}Co_{0.21}Mn_{0.24}$ alloy powder was ball milled for various period by using the high energy ball mill. As the ball milling time increased, activation of the $AB_2$ type composite powder electrodes were enhanced regardless of additives. When the ball milling time was small discharge capacities of the $AB_2$ type composite powder electrodes increased with the milling time. On the other hand for large milling time it decreased with increasing milling time. The maximum discharge capacity was obtained by ball milling for 3-4 min.

졸-겔법을 이용한 Titania-silica 혼합 음극활물질의 제조 (Manufacture of Titania-silica Composite Anode Materials by Sol-gel Method)

  • 방종민;조영임;나병기
    • 청정기술
    • /
    • 제16권2호
    • /
    • pp.140-144
    • /
    • 2010
  • 리튬이온전지의 음극활물질로서 titania-silica 혼합물을 얻기 위해 TiCl4와 TEOS를 전구체로 사용하여 졸-겔법을 이용해 합성하였다. 졸-겔법을 이용하여 혼합물을 합성할 경우에 균일한 분포를 갖는 화합물을 제조할 수 있다. 마이크로파를 이용하여 혼합물을 열처리하여 새로운 물성을 갖는 화합물의 제조를 시도하였다. 합성한 화합물의 물성을 측정하기 위하여 화합물의 조성, 열처리 온도 및 마이크로파 처리등을 실험변수로 사용하였다. 특성 분석방법으로는 합성물질의 구조적 특성과 입자의 표면분석을 하기 위해 XRD(X-ray diffraction)와 SEM (scanning electron microscopy)과 전지 충 방전기를 사용하여 충 방전에 따르는 전지의 용량변화를 관찰하였다.