DOI QR코드

DOI QR Code

Fabrication of petroleum pitch/polymer composite binder for anode material in lithium-ion battery

리튬이온 배터리용 음극 합금/폴리머 복합체 바인더 패브릭

  • 정현택 (대진대학교 에너지공학부)
  • Received : 2023.08.07
  • Accepted : 2023.11.28
  • Published : 2023.12.30

Abstract

The lithium ion battery has applied to various fields of energy storage systems such as electric vehicle and potable electronic devices in terms of high energy density and long-life cycle. Despite of various research on the electrode and electrolyte materials, there is a lack of research for investigating of the binding materials to replace polymer based binder. In this study, we have investigated petroleum pitch/polymer composite with various ratios between petroleum pitch and polymer in order to optimize the electrochemical and physical performance of the lithium-ion battery based on petroleum pitch/polymer composite binder. The electrochemical and physical performances of the petroleum pitch/polymer composite binder based lithium-ion battery were evaluated by using a charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and universal testing machine (UTM). As a result, the petroleum pitch(MP-50)/polymer(PVDF) composite (5:5 wt % ratio) binder based lithium-ion battery showed 1.29 gf mm-1 of adhesion strength with 144 mAh g-1 of specific dis-charge capacity and 93.1 % of initial coulombic efficiency(ICE) value.

Keywords

References

  1. Choi, S.; Park, D.; Hwang, G.; Ryu, C., Study on the Electrochemical Characteristics of Lithium Ion Doping to Cathode for the Lithium ion Capacitor. Transactions of the Korean hydrogen and new energy society 2015, 26 (5), 416-422.
  2. Gabrielli, G.; Marinaro, M.; Mancini, M.; Axmann, P.; Wohlfahrt-Mehrens, M., A new approach for compensating the irreversible capacity loss of high-energy Si/C/LiNi0.5Mn1.5O4 lithium-ion batteries. Journal of Power Sources 2017, 351, 35-44.
  3. Deng, P.; Yang, J.; Li, S.; Fan, T. E.; Wu, H. H.; Mou, Y.; Huang, H.; Zhang, Q.; Peng, D. L.; Qu, B., High Initial Reversible Capacity and Long Life of Ternary SnO2-Co-carbon Nanocomposite Anodes for Lithium-Ion Batteries. Nanomicro Lett 2019, 11 (1), 18.
  4. Park, H.-K.; Kong, B.-S.; Oh, E.-S., Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries. Electrochemistry Communications 2011, 13 (10), 1051-1053.
  5. Zhang, S., Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries. npj Computational Materials 2017, 3 (1).
  6. Sun, B.; Huang, X.; Chen, S.; Munroe, P.; Wang, G., Porous graphene nano-architectures: an efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries. Nano letters 2014, 14 (6), 3145-3152.
  7. Ling, M.; Xu, Y.; Zhao, H.; Gu, X.; Qiu, J.; Li, S.; Wu, M.; Song, X.; Yan, C.; Liu, G.; Zhang, S., Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy 2015, 12, 178-185.
  8. Im, Ji Sun and Seo, Sang Wan and Ahn, Won Jun and Lee, Young-Seak and Kang, Seok Chang and Im, Ji Sun, Application of Pitch-Based Binder for Supercapacitor as a New Alternative of Traditional Polymer Binder, SSRN, 2022, 1-24.
  9. Sarkar, A.; Kocaefe, D.; Kocaefe, Y.; Sarkar, D.; Bhattacharyay, D.; Morais, B.; Chabot, J., Coke-pitch interactions during anode preparation. Fuel 2014, 117, 598-607.
  10. Shujing Lia, Hongtao Guoa, Shuijian He, Haoqi Yang, Kunming Liu, Gaigai Duan, Shaohua Jiang, Advanced electrospun nanofibers as bifunctional electrocatalysts for flexible metal-air (O2) batteries: Opportunities and challenges, Materials & Design, 2022, 214, 110406.
  11. Nguyen, V. A.; Kuss, C., Review-Conducting Polymer-Based Binders for Lithium-Ion Batteries and Beyond. Journal of The Electrochemical Society 2020, 167 (6).
  12. Lee, N.; Seo, S. W.; Kwak, C. H.; Kim, M. I.; Im, J. S., Effects of Oxidation Process on Thermal Properties of Petroleum-based Isotropic Pitch. Applied Chemistry for Engineering 2020, 31 (1), 36-42.
  13. Mochida, I.; Korai, Y.; Ku, C.-H.; Watanabe, F.; Sakai, Y., Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch. Carbon 2000, 38 (2), 305-328.
  14. Kim, J. G.; Kim, J. H.; Song, B.-J.; Jeon, Y. P.; Lee, C. W.; Lee, Y.-S.; Im, J. S., Characterization of pitch derived from pyrolyzed fuel oil using TLC-FID and MALDI-TOF. Fuel 2016, 167, 25-30.
  15. Jong Hoon Cho, Ji Hong Kim, Young-Seak Lee, Ji Sun Im, and Seok Chang Kang, Preparation and Characterization of Pitch based Coke with Anisotropic Microstructure Derived from Pyrolysis Fuel Oil, Appl. Chem. Eng, 2021, 32(6), 640-646.
  16. Kim, J. H.; Choi, Y. J.; Im, J. S.; Jo, A.; Lee, K. B.; Bai, B. C., Study of activation mechanism for dual model pore structured carbon based on effects of molecular weight of petroleum pitch. Journal of Industrial and Engineering Chemistry 2020, 88, 251-259.
  17. Karkar, Z.; Guyomard, D.; Roue, L.; Lestriez, B., A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes. Electrochimica Acta 2017, 258, 453-466.
  18. Tanoglu, M.; Robert, S.; Heider, D.; McKnight, S.;Brachos, V.; Gillespie Jr, J., Effects of thermoplastic preforming binder on the properties of S2-glass fabric reinforced epoxy composites. International journal of adhesion and adhesives 2001, 21 (3), 187-195.
  19. Zheng, H.; Yang, R.; Liu, G.; Song, X.; Battaglia, V. S., Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode. The Journal of Physical Chemistry C 2012, 116 (7), 4875-4882.
  20. Lee, Y.; Choi, J.; Ryou, M.-H.; Lee, Y. M., Polymeric Materials for Lithium-Ion Batteries (Separators and Binders). Polymer Science and Technology 2013, 24 (6), 603-611.
  21. Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K., Recent development of carbon materials for Li ion batteries. Carbon 2000, 38 (2), 183-197.
  22. Ibrahim M.A. Mohamed, Palsamy Kanagaraj, Ahmed S. Yasin, Waheed Iqbal, Changkun Liu, Electrochemical impedance investigation of urea oxidation in alkaline media based on electrospun nanofibers towards the technology of direct-urea fuel cells, Journal of Alloys and Compounds, 2019, 816, 152513-152523.
  23. Chen, L.; Xie, X.; Xie, J.; Wang, K.; Yang, J., Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries. Journal of applied electrochemistry 2006, 36 (10), 1099-1104.
  24. Song, J.; Zhou, M.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D.; Yu, Z.; Regula, M.; Wang, D., Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Advanced functional materials 2014, 24 (37), 5904-5910.
  25. Xu, J.; Chou, S.-L.; Gu, Q.-f.; Liu, H.-K.; Dou, S.-X., The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries. Journal of Power Sources 2013, 225, 172-178.
  26. Li, H.; Chen, Y.-M.; Ma, X.-T.; Shi, J.-L.; Zhu, B.-K.; Zhu, L.-P., Gel polymer electrolytes based on active PVDF separator for lithium ion battery. I: Preparation and property of PVDF/poly (dimethylsiloxane) blending membrane. Journal of membrane science 2011, 379 (1-2), 397-402.
  27. Adusei, P. K.; Johnson, K.; Kanakaraj, S. N.; Zhang, G.; Fang, Y.; Hsieh, Y.-Y.; Khosravifar, M.; Gbordzoe, S.; Nichols, M.; Shanov, V., Asymmetric Fiber Supercapacitors Based on a FeC2O4/FeOOH-CNT Hybrid Material. C 2021, 7 (3), 62.
  28. Jo, Y. J.; Lee, J. D., Electrochemical Performance of Graphite/Silicon/Carbon Composites as Anode Materials for Lithium-ion Batteries. Korean Chemical Engineering Research 2018, 56 (3), 320-326.
  29. Aziz, M.; Buraidah, M.; Careem, M.; Arof, A., PVA based gel polymer electrolytes with mixed iodide salts (K+ I- and Bu4N+ I-) for dye-Sensitized solar cell application. Electrochimica Acta 2015, 182, 217-223.
  30. Zhen-Y Gu, Zhong-H Sun, Jin-Z Guo, Xin-X Zhao, Chen-D Zhao, Shao-F Li, Xiao-T Wang, Wen-H Li, Yong-L Heng, and Xing-L Wu., High-Rate and Long-Cycle Cathode for Sodium-Ion Batteries: Enhanced Electrode Stability and Kinetics via Binder Adjustment. ACS Applied Materials & Interfaces, 2020,12 (42), 47580-47589.