DOI QR코드

DOI QR Code

Synthesis and Electrochemical Properties of Li3V2(PO4)3-LiMnPO4 Composite Cathode Material for Lithium-ion Batteries

  • Yun, Jin-Shik (Center For Energy Convergence, Korea Institute of Science and Technology) ;
  • Kim, Soo (Center For Energy Convergence, Korea Institute of Science and Technology) ;
  • Cho, Byung-Won (Center For Energy Convergence, Korea Institute of Science and Technology) ;
  • Lee, Kwan-Young (Department of Material Science and Engineering, Korea University) ;
  • Chung, Kyung Yoon (Center For Energy Convergence, Korea Institute of Science and Technology) ;
  • Chang, Wonyoung (Center For Energy Convergence, Korea Institute of Science and Technology)
  • Received : 2012.10.02
  • Accepted : 2012.11.14
  • Published : 2013.02.20

Abstract

Carbon-coated $Li_3V_2(PO_4)_3-LiMnPO_4$ composite cathode materials are first reported in this work, prepared by the mechanochemical process with a complex metal oxide as the precursor and sucrose as the carbon source. X-ray diffraction pattern of the composite material indicates that both olivine $LiMnPO_4$ and monoclinic $Li_3V_2(PO_4)_3$ co-exist. We further investigated the electrochemical properties of our $Li_3V_2(PO_4)_3-LiMnPO_4$ composite cathode materials using galvanostatic charging/discharging tests, where our $Li_3V_2(PO_4)_3-LiMnPO_4$ composite electrode materials exhibit the charge/discharge efficiency of 91.9%, while $Li_3V_2(PO_4)_3$ and $LiMnPO_4$ exhibit the efficiency of 87.7 and 86.7% in the first cycle. The composites display unique electrochemical performances in terms of overvoltage and cycle stability, displaying a reduced gap of 141.6 mV between charge and discharge voltage and 95.0% capacity efficiency after $15^{th}$ cycles.

Keywords

References

  1. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188. https://doi.org/10.1149/1.1837571
  2. Li, G.; Azuma, H.; Tohda, M. Electrochem. Solid-State Lett. 2002, 5, A135. https://doi.org/10.1149/1.1475195
  3. Saidi, M. Y.; Barker, J.; Huang, H.; Adamson, G. U.S. Patent 5,871,866, 1999.
  4. Yamada, A.; Chung, S. C.; Hinokuma, K. J. Electrochem. Soc. 2001, 148, A224. https://doi.org/10.1149/1.1348257
  5. Zheng, J. C.; Li, X. H.; Wang, Z. X.; Li, J. H.; Li, L. J.; Wu, L.; Guo, H. J. Ionics 2009, 15, 753. https://doi.org/10.1007/s11581-009-0374-9
  6. Zheng, J. C.; Li, X. H.; Wang, Z. X.; Niu, S. S.; Liu, D. R.; Wu, L.; Li, L. J.; Li, J. H.; Guo, H. J. J. Power Sources 2010, 195, 2935. https://doi.org/10.1016/j.jpowsour.2009.11.006
  7. Kim, S.; Kim, C.; Noh, J. K.; Yu, S.; Kim, S. J.; Chang, W.; Choi, W. C.; Chung, K. Y.; Cho, B. W. J. Power Sources 2012, 220, 422. https://doi.org/10.1016/j.jpowsour.2012.07.135
  8. Shin, H. C.; Park, S. B.; Jang, H.; Chung, K. Y.; Cho, W. I.; Kim, C. S.; Cho, B. W. Electrochim. Acta 2008, 53, 7946. https://doi.org/10.1016/j.electacta.2008.06.005
  9. Kim, Y. U.; Cho, B. W.; Sohn, H. J. J. Electrochem. Soc. 2005, 152, A1475. https://doi.org/10.1149/1.1938047
  10. Woo, S. G.; Jung, J. H.; Kim, H.; Kim, M. G.; Lee, C. K.; Sohn, H. J.; Cho, B. W. J. Electrochem. Soc. 2006, 153, A1979. https://doi.org/10.1149/1.2266418
  11. Oh, S. H.; Jeon, S. H.; Cho, W. I.; Kim, C. S.; Cho, B. W. J. Alloys Compd. 2008, 452, 389. https://doi.org/10.1016/j.jallcom.2006.10.153
  12. Liao, J. H.; Leroux, F.; Payen, C.; Guyomard, D.; Piffard, Y. J. Solid State Chem. 1996, 121, 214. https://doi.org/10.1006/jssc.1996.0030
  13. Yin, S. C.; Grondey, H.; Strobel, P.; Anne, M.; Nazar, L. F. J. Am. Chem. Soc. 2003, 125, 10402. https://doi.org/10.1021/ja034565h
  14. Garcia-Moreno, O.; Alvarez-Vega, M.; Garcia-Alvarado, F.; García- Jaca, J.; Gallardo-Amores, J. M.; Sanjuan, M. L.; Amador, U. Chem. Mater. 2001, 13, 1570. https://doi.org/10.1021/cm000596p
  15. Saidi, M. Y. Barker, J.; Huang, H.; Swoyer, J. L.; Adamson, G. Electrochem. Solid-State Lett. 2002, 5, A149. https://doi.org/10.1149/1.1479295

Cited by

  1. Composite Cathode Material for Lithium-ion Batteries. vol.44, pp.32, 2013, https://doi.org/10.1002/chin.201332018
  2. /C composite cathode materials prepared by a sol–gel method vol.5, pp.98, 2015, https://doi.org/10.1039/C5RA11005J
  3. Recent progress in hybrid cathode materials for lithium ion batteries vol.40, pp.4, 2016, https://doi.org/10.1039/C5NJ02212F
  4. A review for the synthesis methods of lithium vanadium phosphate cathode materials vol.28, pp.24, 2017, https://doi.org/10.1007/s10854-017-7834-1
  5. Graphenised Lithium Iron Phosphate and Lithium Manganese Silicate Hybrid Cathodes: Potentials for Application in Lithium‐ion Batteries vol.32, pp.12, 2013, https://doi.org/10.1002/elan.202060435
  6. High Diffusivity Coefficient of Cyclic Voltammetric Behaviour of Semicarbazones and Thiosemicarbazones and their Antimicrobial Studies vol.32, pp.12, 2013, https://doi.org/10.14233/ajchem.2020.22521