DOI QR코드

DOI QR Code

Electroactive Conjugated Polymer / Magnetic Functional Reduced Graphene Oxide for Highly Capacitive Pseudocapacitors: Electrosynthesis, Physioelectrochemical and DFT Investigation

  • Ehsani, A. (Department of Chemistry, Faculty of science, University of Qom) ;
  • Safari, R. (Department of Chemistry, Faculty of science, University of Qom) ;
  • Yazdanpanah, H. (Department of Chemistry, Payame Noor University) ;
  • Kowsari, E. (Department of chemistry, Amirkabir University of Technology) ;
  • Shiri, H. Mohammad (Department of Chemistry, Payame Noor University)
  • Received : 2017.07.07
  • Accepted : 2018.07.31
  • Published : 2018.12.31

Abstract

The current study fabricated magnetic functional reduced graphene oxide (MFRGO) by relying on ${FeCl_4}^-$ magnetic anion confined to cationic 1-methyl imidazolium. Furthermore, for improving the electrochemical performance of conductive polymer, hybrid poly ortho aminophenol (POAP)/ MFRGO films have then been fabricated by POAP electropolymerization in the presence of MFRGO nanorods as active electrodes for electrochemical supercapacitors. Surface and electrochemical analyses have been used for characterization of MFRGO and POAP/ MFRGO composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. Prepared composite film exhibited a significantly high specific capacity, high rate capability and excellent cycling stability (capacitance retention of ~91% even after 1000 cycles). These results suggest that electrosynthesized composite films are a promising electrode material for energy storage applications in high-performance pseudocapacitors.

Keywords

References

  1. Hou J, Shao Y, Ellis MW, Moore RB, Yi B, Phys Chem Chem Phys, 2011, 13(34), 15384-15402. https://doi.org/10.1039/c1cp21915d
  2. Mishra AK, Ramaprabhu S, J. Phys. Chem C, 2011, 115(29), 14006-14013. https://doi.org/10.1021/jp201673e
  3. Yu Z, McInnis M, Calderon J, Zhai L, Seal S, Thomas J, Nano Energy, 2015, 11, 611-620. https://doi.org/10.1016/j.nanoen.2014.11.030
  4. M Aghazadeh, MR Ganjali, P Norouzi, J. Mater. Sci -Mater. Electron, 2016, 27(7), 7707-7714. https://doi.org/10.1007/s10854-016-4757-1
  5. M Aghazadeh, MR Ganjali, P Norouzi, Thin Solid films, 2017, 634, 24-32. https://doi.org/10.1016/j.tsf.2017.05.008
  6. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ, Nano Lett, 2010, 10(12), 4863-4868. https://doi.org/10.1021/nl102661q
  7. Dey RS, Hjuler HA, Chi Q, J Mater Chem A, 2015, 3(12), 6324-6329. https://doi.org/10.1039/C5TA01112D
  8. E. Frackowiak, K. Jurewicz, S. Delpeux, F. Beguin, J. Power Sources, 2001, 97, 822-825.
  9. C. Portet, P. L. Taberna, P. Simon, E. Flahaut, J. Power Sources, 2005, 139(1-2), 371-378. https://doi.org/10.1016/j.jpowsour.2004.07.015
  10. Ravinder N. Reddy, Ramana G. Reddy, J. Power Sources, 2006, 156(2), 700-704. https://doi.org/10.1016/j.jpowsour.2005.05.071
  11. Ravinder N. Reddy, Ramana G. Reddy, J. Power Sources, 2004, 132(1-2), 315-320. https://doi.org/10.1016/j.jpowsour.2003.12.054
  12. Kim TY, Lee HW, Stoller M, Dreyer DR, Bielawski CW, Ruoff RS, ACS Nano, 2011, 5(1), 436-442. https://doi.org/10.1021/nn101968p
  13. M Aghazadeh, MR Ganjali, J. Mater. Sci - Mater. Electron, 2017, 28(11), 8144-8154. https://doi.org/10.1007/s10854-017-6521-6
  14. M Aghazadeh, MR Ganjali, J. Mater. Sci, 2018, 53(1), 295-308. https://doi.org/10.1007/s10853-017-1514-7
  15. M Aghazadeh, A Bahrami-Samani, D Gharailou, M Ghannadi Maragheh, MR Ganjali, P Norouzi, J. Mater. Sci - Mater. Electron, 2017, 27(11), 11192-11200 https://doi.org/10.1007/s10854-016-5239-1
  16. S.C. Bhise, D.V. Awale, M.M. Vadiyar, S.K. Patil, B.N. Kokare, S.S. Kolekar, J. Solid State Electrochem, 2017, 21(9), 2585-2591. https://doi.org/10.1007/s10008-016-3490-2
  17. C.-W. Liew, S. Ramesh, A.K. Arof, Materials & Design, 2016, 92, 829-835. https://doi.org/10.1016/j.matdes.2015.12.115
  18. M.Y. Izmailova, A.Y. Rychagov, K.K. Den'shchikov, Y.M. Vol'fkovich, E.I. Lozinskaya, A.S. Shaplov, Russ. J. Electrochem , 2009, 45(8), 949-950. https://doi.org/10.1134/S1023193509080205
  19. D. Ekka, M.N. Roy, Ionics, 2014, 20(4), 495-505. https://doi.org/10.1007/s11581-013-1003-1
  20. M. Salanne, Top. Curr. Chem, 2017, 375(3), 63. https://doi.org/10.1007/s41061-017-0150-7
  21. S.K. Patil, M.M. Vadiyar, S.C. Bhise, S.A. Patil, D.V. Awale, U.V. Ghorpade, J.H. Kim, A.V. Ghule, S.S. Kolekar, J. Mater. Sci - Mater. Electron, 2017, 28(16), 11738-11748. https://doi.org/10.1007/s10854-017-6978-3
  22. A. Borun, A. Bald, Ionics, 2016, 22(6), 859-867. https://doi.org/10.1007/s11581-015-1613-x
  23. S. Qu, Y. Sun, J. Li, Ionics, 2017, 23(6), 1607-1611. https://doi.org/10.1007/s11581-017-2114-x
  24. M. Tripathi, S.K. Tripathi, Ionics, 2017, 23(10), 2735-2746. https://doi.org/10.1007/s11581-017-2051-8
  25. C.-W. Liew, S. Ramesh, A.K. Arof, Int. J. Hydrogen. Energ, 2014, 39(6), 2953-2963. https://doi.org/10.1016/j.ijhydene.2013.06.061
  26. G. Liu, Y. Ma, X. Hou, Y. huang, J. Chen, G. Zhan, C. Li, Ionics, 2015, 21(9), 2567-2574. https://doi.org/10.1007/s11581-015-1455-6
  27. G. Lakshminarayana, V.S. Tripathi, I. Tiwari, M. Nogami, Ionics, 2010, 16(5), 385-395. https://doi.org/10.1007/s11581-010-0436-z
  28. P. Xu, H.-g. Gui, Y.-s. Ding, Ionics, 2013, 19(11), 1579-1585. https://doi.org/10.1007/s11581-013-0901-6
  29. L. Huang, X. Yao, L. Yuan, B. Yao, X. Gao, J. Wan, P. Zhou, M. Xu, J. Wu, H. Yu, Z. Hu, T. Li, Y. Li, J. Zhou, Energy Storage materials, 2018, 12, 191-196. https://doi.org/10.1016/j.ensm.2017.12.016
  30. E. Kowsari, A. Ehsani, M. Dashti Najafi, N. Seifvand, A.A. Heidari, Ionics (2018).
  31. S. Randstrom, G.B. Appetecchi, C. Lagergren, A. Moreno, S. Passerini, Electrochim. Acta, 2007, 53(4), 1837-1842. https://doi.org/10.1016/j.electacta.2007.08.029
  32. R. Lin, P.-L. Taberna, S. Fantini, V. Presser, C.R. Perez, F. Malbosc, N.L. Rupesinghe, K.B. Teo, Y. Gogotsi, P. Simon, J. Phys. Chem. Lett., 2011, 2(19), 2396-2401. https://doi.org/10.1021/jz201065t
  33. C. Arbizzani, M. Biso, D. Cericola, M. Lazzari, F. Soavi, M. Mastragostino, J. Power Sources, 2008, 185(2), 1575-1579. https://doi.org/10.1016/j.jpowsour.2008.09.016
  34. A. Ehsani, J. Khodayari, M. Hadi, H. Mohammad Shiri, H. Mostaanzadeh, Ionics, 2017, 23(1), 131-138. https://doi.org/10.1007/s11581-016-1811-1
  35. A. Ehsani, H. Mohammad Shiri, E. Kowsari, R. Safari, J. Shabani Shayeh, M. Barbary, J. Colloid Interface. Sci, 2017. 490, 695-702. https://doi.org/10.1016/j.jcis.2016.12.003
  36. A. Ehsani, H. Mohammad Shiri, E. Kowsari, R. Safari, J. Torabian, S. Kazemi, J. Colloid interface. Sci, 2016, 478, 181-187. https://doi.org/10.1016/j.jcis.2016.06.013
  37. H. Mohammad Shiri, A. Ehsani, J. Colloid Interface. Sci, 2016, 5, 91062-9108.
  38. H. Mohammad Shiri, A. Ehsani, J. Colloid Interface. Sci, 2016, 484, 70-76. https://doi.org/10.1016/j.jcis.2016.08.075
  39. A. Ehsani, E. Kowsari, F. Boorboor Ajdari, R. safari, H. Mohammad Shiri, J. Colloid Interface. Sci, 2018, 512, 151-157. https://doi.org/10.1016/j.jcis.2017.10.046
  40. A. Ehsani, H. Mohammad Shiri, E. Kowsari, R. Safari, J. Shabani Shayeh, M. Barbary, J. Colloid Interface. Sci, 2017, 490, 695-702. https://doi.org/10.1016/j.jcis.2016.12.003
  41. H. Mohammad Shiri, A. Ehsani, J. Colloid interface. Sci, 2016, 473, 126-131. https://doi.org/10.1016/j.jcis.2016.03.065
  42. H. Mohammad Shiri, A. Ehsani, Bull. Chem. Soc. Jpn, 2016, 89(10), 1201-1206. https://doi.org/10.1246/bcsj.20160082
  43. M. Naseri, L. Fotouhi, A. Ehsani, H. Mohammad Shiri, J. Colloid interface. Sci, 2016, 484, 308-313. https://doi.org/10.1016/j.jcis.2016.08.071
  44. M. Naseri, L. Fotouhi, A. Ehsani, S. Dehghanpour, J. Colloid interface. Sci, 2016, 484, 314-319. https://doi.org/10.1016/j.jcis.2016.09.001
  45. A. Ehsani, M.G. Mahjani, M. Bordbar, R. Moshrefi, Synth. Met, 2013, 165, 51-55. https://doi.org/10.1016/j.synthmet.2013.01.004
  46. J. Shabani Shayeh, M. Sadeghinia, S. Omid Ranaei Siadat, A. Ehsani, M. Rezaei, M. Omidi, J. Colloid Interface Sci, 2017, 496, 401-406. https://doi.org/10.1016/j.jcis.2017.02.010
  47. Jr WS Hummers, RE. Offeman, J. Am. Chem. Soc, 1958, 80(6), 1339. https://doi.org/10.1021/ja01539a017
  48. E. Kowsari, M. Mohammadi, Compos. Sci. Technol., 2016, 126, 106-114. https://doi.org/10.1016/j.compscitech.2016.02.019
  49. A. Ehsani, Prog. Org. Coat, 2015, 78, 133-139. https://doi.org/10.1016/j.porgcoat.2014.09.015
  50. A. Ehsani, M.G. Mahjani, R. Moshrefi, H. Mostaanzadeh, J.S. Shayeh, RSC Advances, 2014, 4, 20031-20037. https://doi.org/10.1039/C4RA01029A
  51. H. Mohammad Shiri, A. Ehsani, M. Jalali Khales, J. Colloid interface. Sci, 2017, 505, 940-946. https://doi.org/10.1016/j.jcis.2017.06.086
  52. M. Hosseini, L. Fotouhi, A. Ehsani, M. Naseri, J. Colloid interface. Sci, 2017, 505, 213-219. https://doi.org/10.1016/j.jcis.2017.05.097
  53. J. Aljourani, K. Raeissi, M.A. Golozar, Corros. Sci., 2009, 5(8)1, 1836-1843.
  54. M. Ozcan, I. Dehri, M. Erbil, Appl. Surf. Sci., 2004, 236(1-4), 155-164. https://doi.org/10.1016/j.apsusc.2004.04.017
  55. M. Bouklah, B. Hammouti, A. Aouniti, M.Benkaddour,A. Bouyanzer, Appl. Surf. Sci, 2006, 252(18), 6236-6242. https://doi.org/10.1016/j.apsusc.2005.08.026
  56. L. Elkadi, B. Mernari, M. Traisnel, F. Bentiss, M. Lagrenee, Corros. Sci, 2000, 42(4), 703-719. https://doi.org/10.1016/S0010-938X(99)00101-8
  57. K.Tebbji, B.Hammouti, H.Oudda, A.Ramdani, M.Benkadour, Appl. Surf. Sci, 2005, 252(5), 1378-1385. https://doi.org/10.1016/j.apsusc.2005.02.097
  58. E. A. Noor, Mater. Chem. Phys, 2011, 131, 160-169. https://doi.org/10.1016/j.matchemphys.2011.08.001
  59. F. Bentiss, M. Lebrini, M. Lagrenee, M. Traisnel, A. Elfarouk, H. Vezin, Electrochim. Acta., 2007, 52, 6865-6872. https://doi.org/10.1016/j.electacta.2007.04.111
  60. S.K. Saha, A. Dutta, P. Ghosh, D. Sukul, P. Banerjee, Phys. Chem. Chem. Phys, 2015, 17, 5679-5690. https://doi.org/10.1039/C4CP05614K
  61. L. Fotouhi, N.Fathali, A. Ehsani, Int. J. Hydrogen. Energ, 2018, 43(14), 6987-6996. https://doi.org/10.1016/j.ijhydene.2018.02.123
  62. M. Naseri, L. Fotouhi, A. Ehsani, J. Electrochem. Sci. Technol, 2018, 9(1), 28-36. https://doi.org/10.5229/JECST.2018.9.1.28
  63. Iniewski, K. Nanoelectronics: Nanowires, Molecular Electronics,and Nanodevices: McGraw-Hill, 2010.
  64. Feringa, B. L. Molecular Switches; Wiley: Weinheim, 2007.
  65. C.F. Matta and R.J. Boyd, Quantum Biochemistry (Wiley, Weinheim, 2010).