• Title/Summary/Keyword: Complex contaminated soils

Search Result 27, Processing Time 0.022 seconds

A Survey on the Heavy Metal Concentration of Soil Samples around Onsan Industrial Complex (온산공단(溫山工團)주변토양의 중금속(重金屬) 농도조사)

  • Lee, Su-Rae;Song, Ki-Joon
    • Korean Journal of Environmental Agriculture
    • /
    • v.4 no.2
    • /
    • pp.88-94
    • /
    • 1985
  • In order to investigate the pollution potential of soils after the construction of Onsan Industrial Complex(non-ferrous metal refineries), concentrations of hazardous heavy metals were analyzed for soil samples collected from paddy, upland, orchard and forest soils around the Complex during the period of March 1978 to May 1979. The results are summarized as follows. 1) The concentrations of heavy metals (air-dry basis) for cultivated soil samples from 46 sites were obtained in the range of trace-9.3 ppm As, trace-0.6 ppm Cd, 4${\sim}$22 ppm Cu, trace-0.37 ppm Hg, 6${\sim}$43 ppm Pb and 27${\sim}$93 ppm Zn, which were regarded as non-polluted when compared with the whole Korea data for non-polluted paddy soils. 2) When the heavy metal concentrations were compared with respect to paddy, upland and orchard soils, no significant difference was observed in As, Cd, Cu and Zn whereas significant difference was observed in Hg and Pb. When they were compared with respect to region surrounding the Complex, no significant difference was observed in As, Cd, Hg whereas significant difference was observed in Cu and Pb. 3) Soil samples from several sites near Korea Zinc Refinery were contaminated with Cd, Pb and Zn, due to the accidental emission during its testing operation. Any further contamination was not observed after regular operation of the Refinery.

  • PDF

A Biological Complex Soil Treatment Process Using Selected Soil Bacterial Strains (현장 미생물을 이용한 생물학적 복합토양정화공정에 관한 연구)

  • Cha, Minwhan;Lee, Hanuk;Park, Jaewoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.5-13
    • /
    • 2010
  • The research is intended to develop and verify a biological complex soil treatment process to treat and restore soil and groundwater which is contaminated with oil, heavy metals, and nutrients through experiments with the series of treatment process such as bioreactor, rolled pipe type of contact oxidation system(RPS), and chemical processing system. 5 microbial strains were separated and selected through experiment, whose soil purification efficiency was excellent, and it was noted that anion- and nonion-series of complex agent was most excellent as a surfactant for effectively separating oils from soils. Method to mix and apply selected microbes after treating the surfactant in the contaminated soil was most effective. The removal efficiencies of total petroleum hydrocarbon (TPH)-contaminated soil about 5,000mg/L and above 10,000mg/L were approximatly 90.0% for 28 days and 90.7% for 81 days by soil remediation system and the average removal efficiencies of BOD, $COD_{Mn}$, SS, T-N, and T-P in leachate were 90.6, 73.0, 91.9, 73.8, 65.7% by the bioreactor and RPS. The removal efficiency was above 99.0% by chemical processing system into cohesive agents.

Effects of Heavy Metals on Biomonitoring using Recombinant Bioluminescence Bacteria (유전자재조합균주를 이용한 생물모니터링에 중금속 오염물이 미치는 영향 평가)

  • Kong, In Chul;Kim, Jin Young;Ko, Kyung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.4
    • /
    • pp.32-39
    • /
    • 2013
  • This research focused on the effects of heavy metals on the biomonitoring activity of genetically engineered bioluminescent bacteria, Pseudomonas putida mt-2 KG1206. KG1206 was exposed to single or binary mixtures of different heavy metals as well as soils contaminated with heavy metals. In case of single exposure with different inducer pollutant, the toxicity order was as followings : As(III) > Cd, As(V) >> Cu, Cr(VI). The toxic effects of the binary mixtures was compared to the expected effect based on a simple theory of probabilities. The interactive effects were mostly additive, while in few cases antgonistic and synergistic mode of action was observed for some concentration combinations. No considerable correlation was found between the total metal contents in soils and the bioluminescence activity of each sample. However, statistically significant differences (p = 0.0102) were observed between two groups, classified based on arsenite contamination. These results demonstrate the usage of recombinant bioluminescent microorganism in biomonitoring and the complex interactive effects of metals.

The Effect of Nutrient Amendments on Biodegradability of Kerosene and Growth of Kerosene-degrading Microorganisms (영양원 변화가 Kerosene 분해율 및 분해균주 성장에 미치는 영향)

  • Chung, Kyu-Hyuck
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.7-12
    • /
    • 1999
  • Bioremediation is the technology to harness nature's biodegradative capabilities to remove or detoxify pollutions that threaten public health as environmental contaminants. Composting may become one of major bioremediation technologies for treating soils contaminated with petroleum if the fate of contaminants during composting is better understood Most composting research of petroleum was primarily focused on removing contaminant by optimizing composting conditions. Accordingly, laboratory feasibility studies may be useful to establish a realistic basis in co-composting complex substrate such as petroleum hydrocarbons. The purpose of this study was to assess the optimal conditions of kerosene biodegradation following supplementation with nutrient amendments under simulated composting conditions. Although it increased the growth of bacterial consortium, addition of co-substrates 0.5%(w/v) such as acetic acid, citric acid, glucose, and malic acid was not beneficial. Combination of nitrogen and phosphorous source enhanced kerosene biodegradation and reduced VOC evolution. These results showed that kerosene was able to utilize in bioremediation technology.

  • PDF

A Study on the Factors of Fenton-oxidation of MTBE in Water and Soil (Fenton-oxidation에 의한 MTBE(Methyl Tertiary Butyl Ether)처리시의 영향인자에 관한 연구)

  • 전은미;박석환;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.63-69
    • /
    • 1998
  • The treatment of soils and water contaminated with MTBE using the Fenton oxidation was investigated. The effects of dosage of $H_{2}O_{2}$, and Fe$^{2+}$ concentrations, and solution pH on transformation and mineralization in soil were evaluated. Generation of TBA and acetone following Fenton-oxidation of MTBE in water and generation of acetone following Fenton-oxidation of TBA were observed. Therefore TBA and acetone are degradation intermediates of MTBE. There was a large difference of treatment efficiency in Fenton oxidation of MTBE between soil and water system. This may be caused by the complex nature of soil, soil organic matter which can consumed OH $\cdot$ radicals, and interacting with inorganic-soil constituents. The pH of soil was observed to have a significant effect on the chemical oxidation efficient of MTBE in soil The data demonstrated that optimal pH range were pH 3~4 and around 6. The soil batch studies demonstrated that treatment efficiency of MTBE was enhanced by adding additional ferrous salts but Fenton-oxidation occurred in no additional iron which indicated that iron in soil can catalyze the Fenton-oxidation. The most effective parameter of Fentonoxidation was $H_{2}O_{2}$/Fe$^{2+}$ ratio which theocratical ratio is 0.5. The optimal range of this ratio was found to be 0.6~2.3. In evaluating effect of $H_{2}O_{2}$ dosage on treatment efficiency, the increase of $H_{2}O_{2}$ did not always lead to increase of decompositions of MTBE in soil. Fenton oxidation was effective in destroying MTBE in aqueous extracts of contaminated soil and water. Experimental data provided evidence that the Fenton oxidation can effectively remediate MTBE-contaminated water and soil.

  • PDF

Availability of Heavy Metals in Soil and Their Translocation to Water Dropwort (Oenanthe javanica DC.) Cultivated near Industrial Complex (토양내 중금속 유효도와 미나리중의 흡수이행성 평가)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Shin, Joung-Du;Kim, Jin-Ho;Lee, Jeong-Taek
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.323-330
    • /
    • 2006
  • This experiment was conducted to investigate heavy metal transition and bioavailability from soil to the edible pare of water dropwort near industrial complex. The soils were collected from the paddies cultivating water dropwort stream sediments, and background soils near industrial complex. The pH values, organic matter, Av. $P_2O_5$, Ex. Ca content of paddy soils were higher than those measured for nor-contaminated paddy fields in 2003. The contents of Cd and Cu was higher than those of standard level for soil contamination by Soil Environmental Conservation Act in Korea. The pollution index in stream sediments were higher than those of paddies cultivating water dropwort. The geoaccumulation index of heavy metals in paddy soils and stream sediment were in the order Cu>Cd>Ni>Zn>Pb. The rates of 0.1N-HCl extractable heavy metals to total contents in soils were in the order Cd>Cu>Zn>Ni>Pb. In case of Cd and Ni in paddy soils near industrial complex, 0.1N-HCl extractable heavy metals and total content were highly correlated with each other. Heavy metal contents in mot parts were higher than those in top pare of water dropwort. The Zn and Cu transfer factor from soil to the top pare of water dropwort were higher than those of other heavy metals. The bioavailability of water dropwort varied considerably between the different parts and heavy metals. Cd, Cu and Ni contents in water dropwort were correlated with each elements in paddy soils.

Availability of Heavy Metals in Soils with Different Characteristics and Controversial Points for Analytical Methods of Soil Contamination in Korea (토양특성별 중금속 유효도와 토양오염 평가방법의 개선점)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Shin, Joung-Du;Kim, Jin-Ho;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.106-116
    • /
    • 2005
  • This experiment was conducted to investigate available extraction capacity and potential mobility of heavy metal according to the distribution property and contamination level of heavy metals in soils and to suggest a reform measure of soil environment assessment methodology applied with soil quality and the official soil heavy metal test methods in domestic and foreign countries. The soils were collected from the natural forest paddy with long-term application of same type fertilizer, and paddies near metal mine and industrial complex. The post-treatment methods of soil were partial extraction, acid digestion and sequential extraction methods. For the heavy metal contents with different soil properties, it was shown that their natural forest and paddy soil were slightly low and similar to the general paddy soil, while their paddies near metal mine and industrial complex were higher than the standard level of Soil Environment Protection Act. Heavy metal concentrations in the soils with different soil properties had difference between $HNO_3\;and\;HNO_3+HCl$ extractant by US-EPA 3051a method. There were highly significant positive relationships in both two methods. It was appeared that the higher extractable concentration ratio with 0.1N-HCl to total heavy metal content with $HNO_3+HCl$ extractant the greater total heavy metal content. There were highly significant positive correlationship between total heavy metal content and extractable content with 0.1N-HCl. For extractable capacity of soil extractable solution compared to the total heavy metal content it was appeared that it extractable method with 0.1N-HCl was higher than those with EDTA and DTPA. In extractable ratio with 0.1N-HCl in the contaminated paddy soils near mine and industrial complex, it was shown that the lower soil pH, the higher total heavy metal content. The order of a potential mobility coefficient by distribution of heavy metal content with ie different typies in the soil was Cd>Ni>Zn>Cu>Pb. It could be known that contamination characteristics of heavy metals with different types of soils were affected by different heavy metal components, contamination degree and soil chemical properties, and heavy metal concentration with different extractable methods had great variations with adjacent environment. To be compared with assessment methodology of soil environment impact at domestic and foreign countries with our results, it might be considered that there was necessary to make a single analysis method based on total heavy metal content with environmental overloading concept because of various analysis methods for total heavy metal content and present analysis method with great variation according to soil environment. In spite of showing higher concentration of heavy metal with acidic digestion than the extractable method, it might be considered that there is need to be adjusted the national standard of soil heavy metal contamination.

Degradation of Chlorothalonil by Zerovalent Iron-Montmorillonite Complex (Zerovalent iron-montmorillonite 복합체에 의한 chlorothalonil의 분해)

  • Choi, Choong-Lyeal;Park, Man;Lee, Dong-Hoon;Rhee, In-Koo;Song, Kyung-Sik;Kang, Sang-Jae;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.257-261
    • /
    • 2006
  • Zerovalent iron (ZVI) has been recently used for environmental remediation of soils and groundwaters contaminated by chlorinated organic compounds. As a new approach to improve its reductive activity and stability, zerovalent iron-montmorillonites (ZVI-Mt) complex are synthesized by simple process. Therefore, this study was carried out to elucidate the characteristics of ZVI-Mt complex and to investigate degradation effects of fungicide chlorothalonil. The XRD patterns of ZVI-Mt complex showed distinctive peaks of ZVI and montmorillonite. In ZVI-Mt complex, the oval particles of ZVI were partly surrounded by montmorillonite layers that could prevent ZVI surface oxidation by air. The degradation ratio of chlorothalonil after 60 min exhibited 71% by ZVI and 100% by ZVI-Mt complex. ZVI-Mt21 complex exhibited much higher and faster degradation ratio of chlorothalonil compare to that of ZVI or ZVI-Mt11 complex. Also, degradation rate of chlorothalonil was increased with increasing ZVI or ZVI-Mt complex content and with decreasing initial solution pH.

Degradation Patterns of Orgaonophosphorus Insecticide, Chlorpyrifos by Functionalized Zerovalent Iron (기능화된 Zerovalent Iron에 의한 유기인계 살충제 Chlorpyrifos의 분해 특성)

  • Kim, Dai-Hyeon;Choi, Choong-Lyeal;Kim, Tae-Hwa;Park, Man;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.321-326
    • /
    • 2007
  • An organophosphorus insecticide, chlorpyrifos, has been of a great concern due to persistence, toxicity and accumulation in soils and groundwaters. This study deals with degradation efficiency and dechlorination kinetics of chlorpyrifos by various types of zerovalent irons (ZVIs) for effective remediation of the soils contaminated with chlorinated pesticides. Chlorpyrifos degradation rate was increased with increasing ZVI treatment amount and reaction time. The degradation rate and dechlorination kinetics of chlorpyrifos increased in the order of mZVI > nZVI > cZVI in solutions and soils. Dechlorination number value of chlorpyrifos by cZVI, nZVI and mZVI treatment exhibited 1.08, 3.09 and 3.18, respectively. In soils, degradation efficiency and kinetics of chlorpyrifos significantly were affected by moisture content because of the limited contact between ZVIs and chlorpyrifos. These results suggest that nanosized and functionalized mZVI could be effectively applied to degradation of chlorinated pesticides in the soil and aqueous environments.

Competitive Adsorption of Multi-species of Heavy Metals onto Sandy Clay Loam and Clay Soils (사질식양토와 식토에서 중금속 이온의 다중 경쟁 흡착)

  • Chung, Doug Y.;Noh, Hyun-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.238-246
    • /
    • 2005
  • We conducted this investigation to observe competitive adsorption phenomena among the heavy metals onto the available sorption sites of soil particle surfaces in sandy clay loam and clay soil collected from Nonsan city, Chungnam and Yoosung, Daejeon in Korea, respectively. Polluted and contaminated soils can often contain more than one heavy metal species, resulting in competition for available sorption sites among heavy metals in soils due to complex competitive ion exchange and specific sorption mechanism. And the adsorption characteristics of the heavy metals were reported that the selectivity for the sorption sites was closely related with electropotential and electro negativity carried by the heavy metals. The heavy metals were treated as single, binary and ternary systems as bulk solution phase. Adsorption in multi-element system was different from single-element system as Cr, Pb and Cd. The adsorption isotherms showed the adsorption was increased with increasing equilibrium concentrations. For binary and ternary systems, the amount of adsorption at the same equilibrium concentration was influenced by the concentration of individual ionic species and valence carried by the respective heavy metal. Also we found that the adsorption isotherms of Cd and Pb selected in this experiment were closely related with electronegativity and ionic potential regardless number of heavy metals in solution, while the adsorption of Cr carried higher valance and lower electro negativity than Cd and Pb was higher than those of Cd and Pb, indicating that adsorption of Cr was influenced by ionic potential than by electronegativity. Therefore adsorption in multi-element system could be influenced by electronegativity and ionic potential and valance for the same valance metals and different valance, respectively. But it still needs further investigation with respect to ionic strength and activity in multi-element system to verify sorption characteristics and reaction processes of Cr, especially for ternary system in soils.