DOI QR코드

DOI QR Code

Availability of Heavy Metals in Soil and Their Translocation to Water Dropwort (Oenanthe javanica DC.) Cultivated near Industrial Complex

토양내 중금속 유효도와 미나리중의 흡수이행성 평가

  • Jung, Goo-Bok (National Institute of Agricultural Science and Technology, Environmental and Ecology Division, RDA) ;
  • Kim, Won-Il (National Institute of Agricultural Science and Technology, Environmental and Ecology Division, RDA) ;
  • Lee, Jong-Sik (National Institute of Agricultural Science and Technology, Environmental and Ecology Division, RDA) ;
  • Shin, Joung-Du (National Institute of Agricultural Science and Technology, Environmental and Ecology Division, RDA) ;
  • Kim, Jin-Ho (National Institute of Agricultural Science and Technology, Environmental and Ecology Division, RDA) ;
  • Lee, Jeong-Taek (National Institute of Agricultural Science and Technology, Environmental and Ecology Division, RDA)
  • 정구복 (농업과학기술원 환경생태과) ;
  • 김원일 (농업과학기술원 환경생태과) ;
  • 이종식 (농업과학기술원 환경생태과) ;
  • 신중두 (농업과학기술원 환경생태과) ;
  • 김진호 (농업과학기술원 환경생태과) ;
  • 이정택 (농업과학기술원 환경생태과)
  • Published : 2006.12.31

Abstract

This experiment was conducted to investigate heavy metal transition and bioavailability from soil to the edible pare of water dropwort near industrial complex. The soils were collected from the paddies cultivating water dropwort stream sediments, and background soils near industrial complex. The pH values, organic matter, Av. $P_2O_5$, Ex. Ca content of paddy soils were higher than those measured for nor-contaminated paddy fields in 2003. The contents of Cd and Cu was higher than those of standard level for soil contamination by Soil Environmental Conservation Act in Korea. The pollution index in stream sediments were higher than those of paddies cultivating water dropwort. The geoaccumulation index of heavy metals in paddy soils and stream sediment were in the order Cu>Cd>Ni>Zn>Pb. The rates of 0.1N-HCl extractable heavy metals to total contents in soils were in the order Cd>Cu>Zn>Ni>Pb. In case of Cd and Ni in paddy soils near industrial complex, 0.1N-HCl extractable heavy metals and total content were highly correlated with each other. Heavy metal contents in mot parts were higher than those in top pare of water dropwort. The Zn and Cu transfer factor from soil to the top pare of water dropwort were higher than those of other heavy metals. The bioavailability of water dropwort varied considerably between the different parts and heavy metals. Cd, Cu and Ni contents in water dropwort were correlated with each elements in paddy soils.

공업단지 인근 중금속 복합오염 농경지에서 중금속 오염 특성과 재배작물인 미나리중에 흡수 축적된 중금속과의 관계를 구명하기 위해 토양내 중금속의 상대적인 오염평가지수, 미나리의 중금속 축적양상 및 식물흡수도 등을 분석 검토하였다. 토양의 화학성분은 일반 논토양보다 대체로 높았으며, 특히 토양 pH및 치환성 Ca 함량이 매우 높았다. 토양의 중금속 중 Cd 및 Cu 농도가 우리나라 토양환경기준을 초과하였고, 년차별 0.1N-HCl 추출 가용성함량은 감소하는 경향을 보였다. 토양의 중금속 오염지수(PI) 및 그 편차는 재배토양 보다 농수로 퇴적토양에서 높았고, 중금속별 지화학적농축계수(Igeo)는 Cu>Cd>Ni>Zn>Pb 순이었다. 토양의 전함량에 대한 0.1N-HCl 침출성 함량 비율은 Cd>Cu>Zn>Ni>Pb 순이었고, 그 관계에서 Cd 및 Ni 성분은 고도의 정의 상관을 나타내었다. 미나리 부위별 중금속은 대부분이 뿌리에 축적되었으며, 지상부로의 이행지수(TF)는 Zn 및 Cu가 높은 경향이었다. 식물 흡수도는 비나리 부위 및 성분별로 큰 차이를 보였고, 토양 및 부위별 농도간에는 Cd, Cu 및 Ni 성분이 상관성이 높게 나타났다. 이상의 결과에서 토양의 중금속 오염도는 매우 높았으나 재배작물인 미나리중의 중금속은 대부분 뿌리에서 축적되고, 가식부위인 지상부로의 이행성은 매우 낮은 것을 알 수 있었다.

Keywords

References

  1. National Institute of Agricultural Science and Technology(NIAST). (2003) Survey on the change of heavy metal contents and chemical properties in the vulnerable agricultural fields for environmental contamination: Monitoring project on agrienvironment quality in Korea.Munyoungdang press, 59-108
  2. Chon H. T., Ahn J. S. and Jung M. C. (2005) Heavy metal contamination around the abandoned Au-Ag and base metal mine sites in Koea. Econ. Environ. Geol. 38, 101-111
  3. Adriano, D. C. (1992) Biogeochemistry of trace metals. Lewis publishers
  4. Deng, H., Ye, Z. H. and Wong, M. H. (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metalcontaminated sites in China. Environmental Pollution 132, 29-40 https://doi.org/10.1016/j.envpol.2004.03.030
  5. Liu, H., Probst, A. and Liao, B. (2005) Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Science of The Total Environment 339, 153-166 https://doi.org/10.1016/j.scitotenv.2004.07.030
  6. Kashem, M. A. and Singh, B. R. (2001) Metal availability in contaminated soils: I. Effects of floodingand organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutrient Cycling in Agroecosystems 61, 247-255 https://doi.org/10.1023/A:1013762204510
  7. Walker, D. J., Clemente, R. and Bernal, M. P. (2004) Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57, 215-224 https://doi.org/10.1016/j.chemosphere.2004.05.020
  8. Clemente, R., Walker, D. J. and Bernal, M. P. (2005) Uptake of heavy metals and As byBrassica juncea grown in a contaminated soil in Aznalcóllar (Spain): The effect of soil amendments.Environmental Pollution 138, 46-58 https://doi.org/10.1016/j.envpol.2005.02.019
  9. Kim, K. K., Kim, K. W., Kim, J. Y., Kim, I. S,. Cheong, Y. W. and Min, J. S. (2001) Characteristics of tailings from the closed metal mines as potential contamination source in South Korea. Environmental Geology 41, 358-364 https://doi.org/10.1007/s002540100396
  10. Ahn, K. S., Park, C. Y., Shin, I. H. and Bae, J. P. (2003) Geochemical characteristic of stream sediments and waters around the Pungam landfill in Gwangju city. Korea. J. Korean Earth Science Society 24, 290-302
  11. Muller G. (1979) Index of geoaccumulation in sediments of the Rhine river. Geojournal 2, 108-118
  12. Muller G. (1981) Die schwermetallbelastung der sedimente des Neckars und seiner Nebenflusse. Chemiker-Zeitung 105, 15-164
  13. Loska, K., Wiechua, D. and Korus, I. (2004) Metal contamination of farming soils affected by industry. Environment International 30, 159-165 https://doi.org/10.1016/S0160-4120(03)00157-0
  14. Ullrich, S. M., Ramsey, M. H. and Helios-Rybicka, E. (2000) Total and exchangeable of heavy metals in soils near Bytom, an area of Pb/Zn mining and smelting in Upper Silesia, Poland. Applied Geochemistry 14, 187-196 https://doi.org/10.1016/S0883-2927(98)00042-0
  15. Wang, G., Su, M. Y., Chen, Y. H. Lin, F. F., Luo, D. and Gao, S. F. (2006) Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environmental Pollution 144, 127-135 https://doi.org/10.1016/j.envpol.2005.12.023
  16. Choi, Y. J. and Lee, J. S. (2005) Heavy metal accumulation in wild plants on the roadside of industrial areas. J. Korean Env. Res. & Tech. 8, 39-46
  17. Grytsyuk, N., Arapis, G., Perepelyatnikova, L., Ivanova T. and Vynograds'ka, V. (2006) Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil. Science of The Total Environment 354, 224-231 https://doi.org/10.1016/j.scitotenv.2005.01.007
  18. NIAST(National Institute of Agricultural Science and Technology). (1988) Methods of Soil Chemical Analysis. Sam-Mi press, p. 20-214
  19. Ministry of Environment. (2003) Standard Test Method for soil pollution. http://www.me.go.kr, p.29-164
  20. US EPA. (1996) Microwave assisted acid dissolution of sediments, sludges, soils and oils(Method 3051A). http://www.epa.gov/SW-846/pdfs/3051a.pdf, Rev.1. p. 1- 25
  21. Ministry of Environment. (2003) Soil environmental conservation act. http://www.me.go.kr, p. 3-23
  22. Kloke, A. (1979) Content of arsenic, cadmium, chromium, fluorine, lead, mercury, and nickel in plants grown on contaminated soil. Paper presented at United Nations-ECE Symp
  23. Schmidt, J. P. (1997) Understanding phytotoxicity thresholds for trace elements in land-applied sewage sludge. J. Environ. Qual. 26, 4-10 https://doi.org/10.2134/jeq1997.00472425002600010002x

Cited by

  1. Change of Bioavailability in Heavy Metal Contaminated Soil by Chemical Amendment vol.45, pp.6, 2012, https://doi.org/10.7745/KJSSF.2012.45.6.973
  2. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.75
  3. Uptake and Accumulation of Arsenate on Lettuce (Lactuca sativa L.) Grown in Soils Mixed with Various Rates of Arsenopyrite Gravel vol.59, pp.4, 2014, https://doi.org/10.7740/kjcs.2014.59.4.532
  4. Determining Kinetic Parameters and Stabilization Efficiency of Heavy Metals with Various Chemical Amendment vol.44, pp.6, 2011, https://doi.org/10.7745/KJSSF.2011.44.6.1063