Degradation Patterns of Orgaonophosphorus Insecticide, Chlorpyrifos by Functionalized Zerovalent Iron

기능화된 Zerovalent Iron에 의한 유기인계 살충제 Chlorpyrifos의 분해 특성

  • Kim, Dai-Hyeon (Division of Applied Biology and Chemistry, Kyungpook National University) ;
  • Choi, Choong-Lyeal (Division of Applied Biology and Chemistry, Kyungpook National University) ;
  • Kim, Tae-Hwa (Division of Applied Biology and Chemistry, Kyungpook National University) ;
  • Park, Man (Division of Applied Biology and Chemistry, Kyungpook National University) ;
  • Kim, Jang-Eok (Division of Applied Biology and Chemistry, Kyungpook National University)
  • 김대현 (경북대학교 응용생물화학부) ;
  • 최충렬 (경북대학교 응용생물화학부) ;
  • 김태화 (경북대학교 응용생물화학부) ;
  • 박만 (경북대학교 응용생물화학부) ;
  • 김장억 (경북대학교 응용생물화학부)
  • Published : 2007.12.31

Abstract

An organophosphorus insecticide, chlorpyrifos, has been of a great concern due to persistence, toxicity and accumulation in soils and groundwaters. This study deals with degradation efficiency and dechlorination kinetics of chlorpyrifos by various types of zerovalent irons (ZVIs) for effective remediation of the soils contaminated with chlorinated pesticides. Chlorpyrifos degradation rate was increased with increasing ZVI treatment amount and reaction time. The degradation rate and dechlorination kinetics of chlorpyrifos increased in the order of mZVI > nZVI > cZVI in solutions and soils. Dechlorination number value of chlorpyrifos by cZVI, nZVI and mZVI treatment exhibited 1.08, 3.09 and 3.18, respectively. In soils, degradation efficiency and kinetics of chlorpyrifos significantly were affected by moisture content because of the limited contact between ZVIs and chlorpyrifos. These results suggest that nanosized and functionalized mZVI could be effectively applied to degradation of chlorinated pesticides in the soil and aqueous environments.

상업용 ZVI, nanosize ZVI 및 montmorillonite-ZVI complex 등에 의한 유기인계 살충제 chlorpyrifos의 수질 및 토양에서의 분해 특성을 조사하였다. 수용액내에서 ZVIs 처리량이 증가할수록 chlorpyrifos의 분해율 및 반응속도상수$(k_1)$는 증가되었고 cZVI

Keywords

References

  1. Kale, S. P., Carvalho, F. P., Raghu, K., Sherkhane, P. D., Pandit, G. G. and Rao, A. M. (1999) Studies on degradation of $^{14}C$-chlorpyrifos in the marine environment. Chemosphere. 39, 969-976 https://doi.org/10.1016/S0045-6535(99)00028-4
  2. Mohan, S. V., Sirisha, K., RaO, N. C., Sarma, P. N. and Reddy, S. J. (2004) Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J. Hazard. Mater. B. 116, 39-48 https://doi.org/10.1016/j.jhazmat.2004.05.037
  3. Hernandez, J., Robledo, N. R. Velasco, L., Quintero, R. Pickard, M. A. and Duhalt, R. V. (1998) Chloroperoxidasemediated oxidation of organophosphorus pesticides. Pesticide biochemistry and physiology. 61, 87-94 https://doi.org/10.1006/pest.1998.2351
  4. Manclus J. J. and Montoya, A. (1995) Development of immunoassays for the analysis of chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol in the aquatic environment. Analytica Chemical Acta. 311, 341-348 https://doi.org/10.1016/0003-2670(95)00044-Z
  5. Francis, F. L., Vidal, M. L. and Budzinski, H. (1998) Modelling biological efficacy decrease and rate of degradation of chlorpyrifos-methyl on wheat stored under controlled conditions. J. Stored Products Research. 34, 341-354 https://doi.org/10.1016/S0022-474X(98)00013-7
  6. Robertson, L. N., Chandler, K. J., Stickley, B. D. A., Cocco, R. F. and Ahmetagic, M. (1998) Enhanced microbial degradation implicated in rapid loss of chlorpyrifos from the controlledrelease formulation suSCCom Blue in soil. Crop Protection. 17, 29-33 https://doi.org/10.1016/S0261-2194(98)80009-4
  7. White, N. D. G., Jayas, D. S. and Demianyk, C. J. (1997) Degradation and biological impact of chlorpyrifos-methyl on stored wheat and pirimiphos-methyl on stored maize in western Canada. J. Stored Products Research. 33, 125-135 https://doi.org/10.1016/S0022-474X(96)00049-5
  8. Newcomb, R. D., Campbell, P. M., Russell, R. J. and Oakeshott, J. G. (1997) cDNA cloning, baculovirus-expression and kinetic properities of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina. Insect Biochem. Molec. Biol. 27, 15-25 https://doi.org/10.1016/S0965-1748(96)00065-3
  9. Bending, G. D., Friloux, M. and Walker, A. (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic petential. Microbiology letters. 212, 59-63 https://doi.org/10.1111/j.1574-6968.2002.tb11245.x
  10. Heng, J. and Webster, G. R. (1997) Persistence, penetration, and surface availability of chlorpyrifos, its oxon, and 3,5,6- trichloro-2-pyridinol in Elm bark. J. Agric. Food Chem. 45, 4871-4876 https://doi.org/10.1021/jf970268i
  11. Li, Q. W., Guo, Y. H. and Hu, G. W. (2005) Nanosize and bimodal porous polyoxotungstate-anatase $TiO_2$ composites: Preparation and photocatalytic degradation of organophosphorus pesticide using visible-light excitation. Microporous and Mesoporous Materials. 87, 1-9 https://doi.org/10.1016/j.micromeso.2005.07.035
  12. Yu, J. J. (2002) Removal of organophosphate pesticides from wastewater by supercritical carbon dioxide extraction. Water Research. 36, 1095-1101 https://doi.org/10.1016/S0043-1354(01)00293-7
  13. Liu, B., McConnell, L. L. and Torrents, A. (2001) Hydrolysis of chlorpyrifos in natural waters of the Chesapeake Bay. Chemosphere. 44, 1315-1323 https://doi.org/10.1016/S0045-6535(00)00506-3
  14. Matheson, L. J and Tratnyek, P. G, (1994) Reductive dehalogenation of chlorinated Methanes by iron metal. Envirion. Sci. Technol. 28, 2045-2053 https://doi.org/10.1021/es00061a012
  15. Keum, Y. S. and Qing, X. Li. (2004) Reduction of nitroaromatic pesticides with zerovalent iron. Chemosphere. 54, 255-263 https://doi.org/10.1016/j.chemosphere.2003.08.003
  16. Singh, J., Comfort, S. D. and Shea, P. J. (1998) Remediating RDX-contaminated water and soil using zerovalent iron. Environ. Qual. 27, 1240-1245
  17. Scherer M. M., Richter, S., Valentine, R. L. and Alvare, P. J. (2000) Chemistry and microbiology of reactive barriers for in situ ground-electride. Environ. Sci. Technol. 31, 363-411
  18. Shin, H. S. (2002) Dechlorination of organochlorine insecticide endosulfan by zerovalent iron. M. S. Thesis, Kyungpook National University
  19. Bayer, P. and Finkel, M. (2005) Modelling of sequential groundwater treatment with zero valent iron and granular activated carbon, J. Contaminant Hydrology. 78, 129-146 https://doi.org/10.1016/j.jconhyd.2005.03.005
  20. Agrawal, A. and Reatnyek, P. G. (1996) Reduction of nitro aromatic compounds by zerovalent iron metal. Environ. Sci. Technol. 30, 153-160 https://doi.org/10.1021/es950211h
  21. Liao, C. H., Kang, S. F. and Hsu, Y. W. (2003) Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide. Water Research. 37, 4109-4118 https://doi.org/10.1016/S0043-1354(03)00248-3
  22. Shea, P. J., Machacek, T. A. and Comfort S. D. (2004) Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environmental Pollution. 132, 183-188 https://doi.org/10.1016/j.envpol.2004.05.003
  23. Liao, C. J., Chung, T. L., Chen, W. L. and Kuo, S. L. (2007) Treatment of pentachlorophenol-contaminated soil using nanoscale zero-valent iron with hydrogen peroxide. J. Molecular Catalysis A: Chemical. 265, 189-194 https://doi.org/10.1016/j.molcata.2006.09.050
  24. Zhang, W. X. (2003) Nano scale iron particles for environmental remediation: an overview. J. Nanopart. Res. 5, 323-332 https://doi.org/10.1023/A:1025520116015
  25. Glavee, G. N., Klabunde, K. J., Sorensen, C. M. and Hadlipanayis, G. C. (1995) Chemistry of borohydride reduction of iron (II) and iron (III) ions in aqueous and nonaqueous mediaformation of nanoscale Fe0, FeB, and Fe2B powders. Inorg. Chem. 34, 28-35 https://doi.org/10.1021/ic00105a009
  26. Han, L. B., Choi, N. and Tanaka, M. (1997) The first example of facile oxidative addition of carbon-tellurium bonds to zerovalent Pt, Pd, and Ni complexes. J. Am. Chem. Soc. 119, 1795- 1796 https://doi.org/10.1021/ja963798o
  27. Choi, C. L., Park, M., Lee, D. H., Rhee I. K., Song, K. S., Kang, S. J. and Kim, J. E. (2006) Degradation of chlorothalonil by zerovalent iron-montmorillonite complex. Kor. J. Environ.Agri. 25, 257-261 https://doi.org/10.5338/KJEA.2006.25.3.257
  28. Gordon C. C. Y. and Lee, H. L. (2005) Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Research. 39, 884-894 https://doi.org/10.1016/j.watres.2004.11.030
  29. Joo, S. H., Feitz, A. J., Sedlak, D. L. and Waite, T. D. (2005) Quantification of the oxidizing capacity of nanoparticulate zerovalent iron. Environ. Sci. Technol., 39, 1263-1268 https://doi.org/10.1021/es048983d