DOI QR코드

DOI QR Code

Degradation of Chlorothalonil by Zerovalent Iron-Montmorillonite Complex

Zerovalent iron-montmorillonite 복합체에 의한 chlorothalonil의 분해

  • Choi, Choong-Lyeal (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Park, Man (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Lee, Dong-Hoon (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Rhee, In-Koo (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Song, Kyung-Sik (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Kang, Sang-Jae (Department of Environmental Horticulture, Sangju National University) ;
  • Kim, Jang-Eok (Department of Agricultural Chemistry, Kyungpook National University)
  • Published : 2006.09.30

Abstract

Zerovalent iron (ZVI) has been recently used for environmental remediation of soils and groundwaters contaminated by chlorinated organic compounds. As a new approach to improve its reductive activity and stability, zerovalent iron-montmorillonites (ZVI-Mt) complex are synthesized by simple process. Therefore, this study was carried out to elucidate the characteristics of ZVI-Mt complex and to investigate degradation effects of fungicide chlorothalonil. The XRD patterns of ZVI-Mt complex showed distinctive peaks of ZVI and montmorillonite. In ZVI-Mt complex, the oval particles of ZVI were partly surrounded by montmorillonite layers that could prevent ZVI surface oxidation by air. The degradation ratio of chlorothalonil after 60 min exhibited 71% by ZVI and 100% by ZVI-Mt complex. ZVI-Mt21 complex exhibited much higher and faster degradation ratio of chlorothalonil compare to that of ZVI or ZVI-Mt11 complex. Also, degradation rate of chlorothalonil was increased with increasing ZVI or ZVI-Mt complex content and with decreasing initial solution pH.

본 연구에서는 유기성 화학물질로 오염된 지하수, 수질 및 토양의 효과적인 복원제로 활용되고 있는 ZVI의 반응성 및 안정성을 높이기 위하여 ZVI에 montmorillonite를 첨가하여 합성된 ZVI-Mt 복합체의 특성과 유기염소계 오염물질의 효과적인 제거제로서의 활용가능성을 조사하였다. X-선회절분석 결과 ZVI는 $44.9^{\circ}$ 부근에서 broad reflection peak를 나타내었으며, ZVI-Mt 복합체는 ZVI와 montmorillonite의 전형적인 peak가 관찰되었다. ZVI-Mt 복합체의 형태는 montmorillonite 층이 추형의 ZVI 입자를 부분적으로 둘러싸고 있었으며, ZVI가 공기 중의 산소에 의해 급격히 산화되는 것을 방지할 수 있는 구조적 형태를 나타내었다. ZVI-Mt 복합체에 의한 chlorothalonil의 분해율이 ZVI에 비해 보다 빠르고 높게 나타났으며, 반응 60분 후에는 chlorothalonil이 완전히 분해되었다. ZVI, ZVI-Mt(2:1) 및 ZVI-Mt (1:1) 모두 pH가 낮을수록 chlorothalonil의 분해가 잘 일어났으며, 모든 pH 영역에서 ZVI 보다 ZVI-Mt에 의한 chlorothalonil의 분해 효율이 높게 나타났다. 그러므로 기존의 방법에 의해 ZVI를 합성하는 것 보다는 montmorillonite를 혼합하여 복합체를 형성하는 것이 montmorillonite 층의 card section현상에 의해 ZVI의 환원력과 안정성을 증가시키는 것으로 나타났다.

Keywords

References

  1. Joo, S. H., Feitz, A. J. and Waite, D. (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron, Environ. Sci. Tech. 38, 2242-2247 https://doi.org/10.1021/es035157g
  2. Alowitz, M. J. and Scherer, M. M. (2002) Kinetics of nitrate, nitrite and Cr(VI) reduction by iron metal. Environ. Sci. Technol. 36, 299-306 https://doi.org/10.1021/es011000h
  3. Agrawal, A. and Reatnyek, P. G. (1996) Reduction of nitro aromatic compounds by zerovalent iron metal. Environ. Sci. Technol. 30, 153-160 https://doi.org/10.1021/es950211h
  4. Shea, P. J., Machacek, T. A., Comfort S. D. (2004) Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environmental Pollution, 132, 183-188 https://doi.org/10.1016/j.envpol.2004.05.003
  5. Zhang, W. X. (2003) Nano scale iron particles for environmental remediation: an overview. J. Nanopart. Res. 5, 323-332 https://doi.org/10.1023/A:1025520116015
  6. Lein, H. L. and Jhang, W. (1999) Transformation of chlorinated methanes by nanoscale iron particle. J. Environ. Eng. 125, 1042-1047 https://doi.org/10.1061/(ASCE)0733-9372(1999)125:11(1042)
  7. Matheson, L. J. and Tratnyek, P. G. (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Tech. 28, 2045-2053 https://doi.org/10.1021/es00061a012
  8. Agrawal, A., Ferguson, W. J., Gardner, B. O., Christ, J. A., Bandstra, J. Z. and Trantnyek, P. G. (2002) Effects of carbonate species on the kinetics of dechlorination of 1,1,1-trichloroethane by zero-valent iron. Environ. Sci. Tech. 36, 4326-4333 https://doi.org/10.1021/es025562s
  9. Kober, R., Schlicker, O., Ebert, M. and Dahmke, A. (2002) Degradation of chlorinated ethylenes by $Fe^{0}$: inhibition processes and mineral precipitation. Environ. Geol. 41, 644-652 https://doi.org/10.1007/s00254-001-0443-5
  10. Ghauch, A. (2001) Degradation of benomyl, picloram and dicamba in a conical apparatus by zero-valent iron powder. Chemosphere, 43, 1109-1117 https://doi.org/10.1016/S0045-6535(00)00184-3
  11. Wang, C. B. and Zhang, W. X. (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Tech. 31, 2154-2156 https://doi.org/10.1021/es970039c
  12. Yang, G. C. C. and Lee, H. L. (2005) Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Res. 39, 884-894 https://doi.org/10.1016/j.watres.2004.11.030
  13. Joo, S. H., Feitz, A. J., Sedlak, D. L. and Waite, T. D. (2005) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ. Sci. Tech. 39, 1263-1268 https://doi.org/10.1021/es048983d
  14. Dror, I., Baram, D. and Berkowitz, B. (2005) Use of nanosized catalysts transformation of chloro-organic pollutants, Environ. Sci. Tech. 39, 1283-1290 https://doi.org/10.1021/es0490222
  15. Kanel, S. R., Manning, B., Charlet L. and Lee, H. (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Tech. 39, 1291-1298 https://doi.org/10.1021/es048991u
  16. Kim, D. H. (2005) Enhanced degradation of the organophosphorus insecticide chlorpyrifos by synthesized zerovalent iron. M. S. Thesis, Kyungpook National University
  17. Park, M., Kim, C. Y., Lee, D. H., Choi, C. L., Choi, J., Lee, S. R. and Choi, J. H. (2004) Intercalation of magnesium-urea complex into swelling clay. J. Physics & Chem. Solid, 65, 409-412 https://doi.org/10.1016/j.jpcs.2003.09.011
  18. He, C., Makovicky, E. and Osback, B. (1996) Thermal treatment and pozzolanic activity of Na- and Ca-montmorillonite. Applied Clay Sci. 10, 351-368 https://doi.org/10.1016/0169-1317(95)00037-2
  19. Yao, Y. D., Chen, Y. Y., Lee, S. F., Chang, W. C. and Hu, H. L. (2002) Magnetic and thermal studies of nano-size Co and Fe particles. J. Magn. Magn. Mater. 239, 249-251 https://doi.org/10.1016/S0304-8853(01)00546-7