• Title/Summary/Keyword: Compaction pressure

Search Result 294, Processing Time 0.032 seconds

Effect of Soil Amendments at Heavy Traffic Area in Golf Course (골프장 답압지역의 토양개량)

  • 태현숙;김용선;고석구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.5
    • /
    • pp.107-113
    • /
    • 2000
  • The purpose of this study is to investigate the effects of soil amendments for reducing soil compaction at heavy traffic area in golf course. Major results of this research are summarized at follows: 1. In the Lab. experiment, the porosity was improved significantly when the materials, such as peatmoss, charcoal, and tire chip mixtures were used respectively. Especially mixture of sand and 20% peatmoss showed higher effectiveness (10%) in porosity, comparing with ordinary sand. This soil mixture(sand 80%+peatmoss 20%) was observed the best in water retention, soil hardness and hydrauric conductivity. 2. In the greenhouse experiment, traffic pressure was given 7 times a day on several combination of mixture treatments to see the top dry weight. The soil mixture of 20% peatmoss showed the highest in the top dry weight. When the more traffic pressure(15 time/day) were given on the different treatment, the top dry weight was significantly reduced. However, the mixture of 20% peatmoss also had the least influence on this type of heavy traffic. 3. In the field experiment, the soil amendments were treated in traffic area f golf course, and observed at 30days, 60days, 90days, 120days after treatment. Visual turf quality(color), root length and soil compaction were compared to those of control. As a result, overall treatments with soil amendments were effective, which showed better turf quality and less soil compaction. 4. In the field test, physical characters of soil (such as soil hardness and hydrauric conductivity) in sand+tire chip+peatmoss(60:20:20, %, v/v) treatment was significantly improved. Also in the slow increasing of traffic, the soil compaction was the most effective in reducing soil hardness.

  • PDF

Variations of Coefficient of Earth Pressure at Rest According to Stress Paths for Compacted Residual Soils (다짐 화강풍화토의 응력이력에 따른 정지상태 토압계수의 변화)

  • Lee Byung-Sik;Park Sung-Kook
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.85-93
    • /
    • 2005
  • Earth pressures acting on unmovable rigid walls vary according to loading-unloading conditions due to compaction experienced by backfill soil. Appropriate coefficients of earth pressure at rest with considering this influence need to be determined to estimate earth pressures more reasonably.0 this study, a single cycle hysteretic model simulating soil's loading-unloading-reloading behavior under $K_o-condition$ was reproduced by conducting a series of $K_o-triaxial$ test for compacted residual soils. Based on the results, coefficients of earth pressure at rest at each stage of stress paths such as, virgin loading, unloading and reloading were determined. Also, applicabilities of empirical equations to the estimation of the coefficients were evaluated by comparing the experimental results with those estimated by the equations. As a result, it was concluded that the empirical equations could be applied reasonably to the estimation of the coefficients for compacted residual soils in cases where some amount of error might be acceptable for the reloading stage of the hysteretic model.

Centrifugal Model Test on Behavior of Underground Corrugated Steel Plate with Compaction Degree (다짐도에 따른 지중파형강판의 거동에 대한 원심모형실험)

  • Heo, Yol;Kwon, Seonuk;Kim, Hongjong;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.83-90
    • /
    • 2011
  • A series of centrifugal model test was conducted to investigate the distribution of vertical earth pressure on circular ductile underground corrugated steel plate waterway culvert with considering the compaction degree of the backfill in the high landfilled embankment section. The compaction degree of backfill was varied to 80, 85, 90, and 95% at the 53g-level gravity considering the similarity of the site. As a result of this test, the load reduction factor by the arching effect of the top of corrugated steel plate showing ductile behavior nearly agreed with the load reduction factor according to the compaction degree of backfill specified in the AISI(2002) design method. The vertical earth pressure measured at the top of the corrugated steel plate was linearly decreased as the compaction degree increased. The greater the compaction degree of backfill was, the greater the reduction of surface loading on the top of the corrugated steel plate by arching effect. The load decreased by arching effect on top of the corrugated steel plate was transferred to the side backfill of the corrugated steel plate(EP 1) and the outside of backfill(EP 3).

A Study on Clogging during Installation of Compaction Pile (다짐말뚝 시공 시 공극 막힘 현상 분석 연구)

  • Choi, Jeong Ho;Park, Seong Jin;Choo, Yun Wook;Kim, Il Gon;Kim, Byeong Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.33-45
    • /
    • 2022
  • A series of model tests were performed in this study to demonstrate the clogging mechanism created during the installation of a compaction pile to improve soft ground. The application of an air-jet to extrude sand or aggregates from a casing during the installation of a compaction pile imposes a remarkably high-pressure difference between the composite soil layers of clay and sand (or aggregates), resulting in severe clogging. Therefore, a one-dimensional testing system was developed to simulate composite soil layers consisting of clay and sand (or aggregates) and to apply a high-pressure differential at both boundaries, thus replicating the extrusion process used in compaction pile installation. Herein, the performance of two construction materials for compaction piles of crushed stone and grading-controlled aggregates was compared. A series of one-dimensional model tests were performed under multiple pressure settings, with clogging depth and permeability measured in each case. Results indicate that, blinding clogging mechanisms and blocking defined by previous studies were observed for crushed stone, and a new mechanism of "infiltration" was revealed and defined. Whereas, the controlled aggregates performed excellently against clogging because only blinding was observed.

A Case Study on the Application of Gravel Pile in Soft Ground (Gravel Pile에 의한 연약지반 개량 시험시공 사례연구)

  • 천병식;고용일;여유현;김백영;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.223-230
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. The in-situ tests were carried out to utilize gravel as a substitute for sand. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed, The clogging effect was checked at various depth in gravel column after the test. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF

Densification of Al2O3 Nanopowder by Magnetic Pulsed Compaction and Their Properties (자기펄스 가압성형법에 의한 알루미나 나노분말의 치밀화 및 특성 평가)

  • Kang, R.C.;Lee, M.K.;Kim, W.W.;Rhee, C.K.;Hong, S.J.
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.37-45
    • /
    • 2008
  • This article presents the challenges toward the successful consolidation of $Al_2O_3$ nanopowder using magnetic pulsed compaction (MPC). In this research the ultrafine-structured $Al_2O_3$ bulks have been fabricated by the combined application of magnetic pulsed compaction (MPC) and subsequent sintering, and their properties were investigated. The obtained density of $Al_2O_3$ bulk prepared by the combined processes was increased with increasing MPC pressure from 0.5 to 1.25 GPa. Relatively higher hardness and fracture toughness in the MPCed specimen at 1.25 GPa were attributed to the retention of the nanostructure in the consolidated bulk without cracks. The higher fracture toughness could be attributed to the crack deflection by homogeneous distribution and the retention of nanostructure, regardless of the presence of porosities. In addition, the as consolidated $Al_2O_3$ bulk using magnetic pulsed compaction showed enhanced breakdown voltage.

A Comparative Study on the Effect of Promoting Consolidation between SCP and GCP (SCP와 GCP의 압밀촉진효과에 관한 비교 고찰)

  • You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.2
    • /
    • pp.41-46
    • /
    • 2009
  • In this paper, a series of model tests were performed in laboratory to evaluate promoting consolidation of compaction pile methods for soft ground improvement. For the model tests, composite soil samples that have 10% replacement area ratio were prepared by using sand, gravel, and sandy gravel for the materials of compaction piles. After loading to each composite soil sample, the excess pore pressure dissipation and settlement were investigated. In addition, the behavior of clay mixed with each compaction pile was also monitored at the end of consolidation to evaluate clogging phenomenon. As a test result, the effects for decreasing settlement and promoting consolidation by GCP were prominent, and the mixed clay was not monitored in all of the three compaction piles.

  • PDF

A Study on the Shock Compaction of Ceramic Powders using Explosive (폭약을 이용한 세라믹분말의 충격고화에 관한 연구)

  • Kim, Young-Kook;Kim, See-Jo;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.157-161
    • /
    • 2012
  • ZnO-98% and $Ga_2O_3$-2% powder were consolidated by shock compaction technique, which uses a high performance explosive. The microstructural and electrical characteristics of $ZnOGa_2O_3$ compact with density of 97% and hardness of 220~250 $H_v$ were investigated using SEM (Scanning Electron Microscope) and X-ray diffraction analysis, respectively. In the microstructures of the compact, there were no visible cracks at most of the surface areas, and interparticle bonding between powder particles was confirmed. The broadened peaks were detected due to deformation of crystallited size and high electric resistances were confirmed due to increased grains because of shock energy with a high pressure and high velocity.

Comparison of the Finite Element Analysis and Experimental Result for Green Body Density of Alumina Ceramics (알루미나 압축성형체의 성형밀도와 유한요소 시뮬레이션 결과의 비교)

  • Yook, Young-Jin;Im, Jong-In
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.235-239
    • /
    • 2007
  • For the pressure compaction process of the ceramic powder, the density distribution is very important for the uniform shrinkages at the sintered body. In this paper, we fabricated alumina green body using compaction process and simulated about same condition. Then comparison of simulation and experimental result confirmed that accuracy of simulation. On the average density of top and lower part was each $2.41g/cm^3,\;2.27g/cm^3$ and deviation at final step was calculated with 0.06 in simulation. Also, experiments show that total density of top and lower part was each $2.59g/cm^3,\;2.36g/cm^3$, and deviation was 0.09. Conclusion, that was not a difference to the simulation and experimental result. The application using the finite element simulation method is possible optimization of the compressing process, predict generated part of cracks and there is a possibility of getting result of more fast, more accurate then existing experience method.

An analytical solution for compaction grouting problem considering exothermic temperature effect of slurry

  • Chao Li;Yingke Liu;Man Yuan;Tengrui Yang
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.593-601
    • /
    • 2023
  • In this paper, an analytical solution of large-strain cylindrical cavity expansion in compaction grouting problem under temperature field is given. Considering the stress increment caused by temperature, the analytical solution of cavity expansion under traditional isothermal conditions is improved by substituting the temperature stress increment into the cavity expansion analysis. Subsequently, combined with the first law of thermodynamics, the energy theory is also introduced into the cylindrical cavity expansion analysis, and the energy dissipation solution of cylindrical cavity expansion is derived. Finally, the validity and reliability of solution are proved by comparing the results of expansion pressure with those in published literatures. The results show that the dimensionless expansion pressure increases with the increase of temperature, and the thermal response increases with the increase of dilation angle. The higher the exothermic temperature of grouting slurry, the greater the plastic deformation energy of the surrounding soil, that is, the greater the influence on the surrounding soil deformation and the surrounding environment. The proposed solution not only enrich the theoretical system of cavity expansion, but also can be used as a theoretical tool for energy geotechnical engineering problems, such as CPT, nuclear waste disposal, energy pile and chemical grouting, etc.