DOI QR코드

DOI QR Code

A Study on the Shock Compaction of Ceramic Powders using Explosive

폭약을 이용한 세라믹분말의 충격고화에 관한 연구

  • 김영국 (구마모토 대학 충격극한환경연구센터) ;
  • 김시조 (안동대학교 기계설계공학과) ;
  • 조상호 (전북대학교 자원에너지공학과)
  • Received : 2012.04.16
  • Accepted : 2012.04.25
  • Published : 2012.04.30

Abstract

ZnO-98% and $Ga_2O_3$-2% powder were consolidated by shock compaction technique, which uses a high performance explosive. The microstructural and electrical characteristics of $ZnOGa_2O_3$ compact with density of 97% and hardness of 220~250 $H_v$ were investigated using SEM (Scanning Electron Microscope) and X-ray diffraction analysis, respectively. In the microstructures of the compact, there were no visible cracks at most of the surface areas, and interparticle bonding between powder particles was confirmed. The broadened peaks were detected due to deformation of crystallited size and high electric resistances were confirmed due to increased grains because of shock energy with a high pressure and high velocity.

본 논문에서는 산업용 폭약을 이용한 충격고화기술을 ZnO-98%과 $Ga_2O_3$-2% 혼합분말에 적용하여 직경 30mm, 두께 6mm인 $ZnOGa_2O_3$고화체를 형성 시켰다. 고화체의 경도 및 상대밀도는 각각 220~250 Hv, 97%이었으며, 표면에 대한 주사현미경 관찰결과 균열 및 결함은 발생되지 않았으며, 분말입자들은 강한 충격파에 의해 변형되어 서로 결합되었음을 확인하였다. 또한 X-ray 분석결과로부터 입자 간의 격자결합 및 결정자의 변형을 확인 할 수 있었으며, 이러한 격자결합과 결정자의 변형은 높은 전기저항의 원인이 된다는 것을 보여주었다.

Keywords

References

  1. Hokamoto K., S. I. Tanaka and M., Fujita, 2000, Optimization of the experimental conditions for high-temperature shock consolidation, International Journal of Impact Engineering, 24, 631-640. https://doi.org/10.1016/S0734-743X(99)00034-2
  2. Derivas A. A., V. M. Kudinov and F. I. Maveenkov, 1967, Explosive welding, Combusion, Explosion, and Shock Waves, 3, 111-118.
  3. Meyers M. A., Dynamic behavior of materials. 1994, John Wiley & Sons Inc, 523-540p.
  4. Kim Y., F. Mitsugib, I. Tomoaki, K. Hokamoto and S. Itoh, 2011, Shock-consolidated $iO_2$ bulk with pure anatase phases fabricated by explosive compaction using underwater shock wave, Journal of the European Ceramic Society 31, 1033-1039. https://doi.org/10.1016/j.jeurceramsoc.2010.12.020
  5. Kim Y., T. Ueda, K. Hokamoto and S. Itoh, 2009, Electric and microstructural characteristics of bulk ZnO fabricated by underwater shock compaction, Ceram. Inter. 35, 3247-3252. https://doi.org/10.1016/j.ceramint.2009.05.039
  6. Meyers M. A., D. J. Benson and E. A. Olevsky, 1999, Shock consolidation: Microstructurally- based analysis and computational modeling, Acta mater., 47, 2089-2108. https://doi.org/10.1016/S1359-6454(99)00083-X
  7. Kim Y. and S. Itoh, 2007, A study on the behavior of underwater shock waves generated in a water container and its application to magnetic refrigeration material, The International journal of Multiphysics, 1, 3, 291-302. https://doi.org/10.1260/175095407782219265
  8. Itoh S., S. Kubota, S. Nagano and M. Fujita, 1998, On generation of ultra-high pressure by converging of underwater shock waves, J. Pressure Vessel Technol. 120, 51-55. https://doi.org/10.1115/1.2841884