DOI QR코드

DOI QR Code

Centrifugal Model Test on Behavior of Underground Corrugated Steel Plate with Compaction Degree

다짐도에 따른 지중파형강판의 거동에 대한 원심모형실험

  • 허열 (충북대학교 공과대학 토목공학과) ;
  • 권선욱 (충북대학교 대학원 토목공학과) ;
  • 김홍종 (한국도로공사 도로교통연구원) ;
  • 배우석 ((주)나노지오이엔씨 기술연구소)
  • Received : 2011.08.11
  • Accepted : 2011.09.01
  • Published : 2011.10.01

Abstract

A series of centrifugal model test was conducted to investigate the distribution of vertical earth pressure on circular ductile underground corrugated steel plate waterway culvert with considering the compaction degree of the backfill in the high landfilled embankment section. The compaction degree of backfill was varied to 80, 85, 90, and 95% at the 53g-level gravity considering the similarity of the site. As a result of this test, the load reduction factor by the arching effect of the top of corrugated steel plate showing ductile behavior nearly agreed with the load reduction factor according to the compaction degree of backfill specified in the AISI(2002) design method. The vertical earth pressure measured at the top of the corrugated steel plate was linearly decreased as the compaction degree increased. The greater the compaction degree of backfill was, the greater the reduction of surface loading on the top of the corrugated steel plate by arching effect. The load decreased by arching effect on top of the corrugated steel plate was transferred to the side backfill of the corrugated steel plate(EP 1) and the outside of backfill(EP 3).

본 연구에서는 고성토 구간 파형강판 수로암거의 대표단면을 대상으로 뒤채움부의 다짐도에 따른 원형 연성지중 암거에 작용되는 수직토압 분포를 파악하기 위해 원심모형실험을 실시하였다. 모형실험은 뒤채움부의 다짐도를 80, 85, 90, 95%로 변화시키면서 현장의 상사성을 고려하여 53g-level의 중력수준에서 수행하였다. 실험결과, 연성거동을 하는 파형강판 상부의 아칭효과에 의한 하중감소계수는 AISI(2002) 설계법에서 규정한 뒤채움 다짐도에 따른 하중감소계수와 거의 일치하였다. 파형강판 상부에서 측정된 수직토압은 다짐도가 증가함에 따라 선형적으로 감소하였으며, 뒤채움부의 다짐도가 클수록 아칭효과에 의한 파형강판 상부의 상재하중 감소가 크게 발휘된다는 것을 확인할 수 있었다. 파형강판 상부에서 발생한 아칭효과에 의해 감소한 하중이 파형강판측면 뒤채움부(EP 1)와 뒤채움부 외부(EP 3)로 전이되는 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 충북대학교

References

  1. 이처근(2001), 원심 및 수치모델링에 의한 화강토 지반상 Diaphragm Wall의 거동, 박사학위논문, 충북대학교, pp. 70-90.
  2. 최동호, 김원철, 김기남(2001), 파형강판 암거의 근사해석, 한국지반환경공학회 논문집, Vol. 2, No. 4, pp. 15-27.
  3. 최동호, 이승재, 김남기(2006), 장지간 지중강판 박스컬버트의 휨모멘트 식, 한국지반환경공학회 논문집, Vol. 7, No. 3, pp. 55-68.
  4. 한국도로공사(2001), 지중강판구조물 설계 및 시공 지침, pp. 1-50.
  5. 한국도로공사(2003), 고속도로 건설공사 지중강판 합성형 암거 표준도, 도면번호 2.
  6. American Association of State Highway and Transportation Officials(2002), Standard Specifications for Highway Bridges, 17edition, Washington, DC, pp. 1-1028.
  7. American Iron and Steel Institute(2002), Handbook of Steel Drainage & Highway Construction Products, Washington DC, pp. 1-466.
  8. Atkinson, J.(2007), An Introduction to the Mechanics of Soils and Foundations, Taylor & Francis, New york, pp. 316-323.
  9. Canadian Standards Association(2001), Canadian Highway Bridge Design Code, CAN/CSA-S6-00, Rexdale, Ontario, pp. 1-800.
  10. Duncan, J. M., Seed, R. B. and Drawsky, R. H.(1985), Design of Corrugated Metal Box Culverts, Transportation Research Record 1008, Washington, DC, pp. 33-41.
  11. Marston, A.(1930), The Theory of External Loads on Closed Conduits in the Light of the Latest Experiments, Iowa State University Engineering Experiment Station, Bulletin 96, Ames, Iowa, pp. 1-36.
  12. Marston, A. and A. O. Anderson(1913), The Theory of Loads on Pipes in Ditches and Tests of Cement and Clay Drain Tile and Sewer Pipe, Iowa State University Engineering Experiment Station, Bulletin 31, Ames, Iowa, pp. 1-181.
  13. Spangler, M. G.(1941), The Structural Design of Flexible Pipe Culverts, Iowa State University Engineering Experiment Station, Bulletin 153, Ames, Iowa, pp. 1-155.
  14. Spangler, M. G.(1950), A Theory of Loads on Negative Projecting Conduits, Proceeding of Highway Research Board, 30, Washington, DC, pp. 153-161.
  15. Spangler, M. G. and Handy, R. L.(1950), Soil Engineering, The Harper & Row, New york, pp. 1-748.
  16. Taylor, R. N.(1995), Geotechnical Centrifuge Technology, Chapman & Hall, London, pp. 115.
  17. White, H. A. and Layer, J. P.(1960), The Corrugated Metal Conduit as a Compression Ring, Highway Research Board, Proceedings of the Annual Meeting, 39, pp. 389-397.