• Title/Summary/Keyword: Column matrix

Search Result 334, Processing Time 0.025 seconds

SPANNING COLUMN RANKS OF NON-BINARY BOOLEAN MATRICES AND THEIR PRESERVERS

  • Kang, Kyung-Tae;Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.507-521
    • /
    • 2019
  • For any $m{\times}n$ nonbinary Boolean matrix A, its spanning column rank is the minimum number of the columns of A that spans its column space. We have a characterization of spanning column rank-1 nonbinary Boolean matrices. We investigate the linear operators that preserve the spanning column ranks of matrices over the nonbinary Boolean algebra. That is, for a linear operator T on $m{\times}n$ nonbinary Boolean matrices, it preserves all spanning column ranks if and only if there exist an invertible nonbinary Boolean matrix P of order m and a permutation matrix Q of order n such that T(A) = PAQ for all $m{\times}n$ nonbinary Boolean matrix A. We also obtain other characterizations of the (spanning) column rank preserver.

LINEAR PRESERVERS OF SPANNING COLUMN RANK OF MATRIX PRODUCTS OVER SEMIRINGS

  • Song, Seok-Zun;Cheon, Gi-Sang;Jun, Young-Bae
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.1043-1056
    • /
    • 2008
  • The spanning column rank of an $m{\times}n$ matrix A over a semiring is the minimal number of columns that span all columns of A. We characterize linear operators that preserve the sets of matrix ordered pairs which satisfy multiplicative properties with respect to spanning column rank of matrices over semirings.

On dence column splitting in interial point methods of linear programming (내부점 선형계획법의 밀집열 분할에 대하여)

  • 설동렬;박순달;정호원
    • Korean Management Science Review
    • /
    • v.14 no.2
    • /
    • pp.69-79
    • /
    • 1997
  • The computational speed of interior point method of linear programming depends on the speed of Cholesky factorization. If the coefficient matrix A has dense columns then the matrix A.THETA. $A^{T}$ becomes a dense matrix. This causes Cholesky factorization to be slow. We study an efficient implementation method of the dense column splitting among dense column resolving technique and analyze the relation between dense column splitting and order methods to improve the sparsity of Cholesky factoror.

  • PDF

LINEAR PRESERVERS OF SPANNING COLUMN RANK OF MATRIX SUMS OVER SEMIRINGS

  • Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.301-312
    • /
    • 2008
  • The spanning column rank of an $m{\times}n$ matrix A over a semiring is the minimal number of columns that span all columns of A. We characterize linear operators that preserve the sets of matrix pairs which satisfy additive properties with respect to spanning column rank of matrices over semirings.

A COMPARISON OF MAXIMAL COLUMN RANKS OF MATRICES OVER RELATED SEMIRINGS

  • Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.213-225
    • /
    • 1997
  • Let A be a real $m \times n$ matrix. The column rank of A is the dimension of the column space of A and the maximal column rank of A is defined as the maximal number of linearly independent columns of A. It is wekk known that the column rank is the maximal column rank in this situation.

  • PDF

Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation (균일하게 탄성지지된 보-기둥요소의 엄밀한 동적강성행렬 유도)

  • 김문영;윤희택;곽태영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.463-469
    • /
    • 2002
  • The governing equation and force-displacement rotations of a beam-column element on elastic foundation we derived based on variational approach of total potential energy. An exact static and dynamic 4×4 element stiffness matrix of the beam-column element is established via a generalized lineal-eigenvalue problem by introducing 4 displacement parameters and a system of linear algebraic equations with complex matrices. The structure stiffness matrix is established by the conventional direct stiffness method. In addition the F. E. procedure is presented by using Hermitian polynomials as shape function and evaluating the corresponding elastic and geometric stiffness and the mass matrix. In order to verify the efficiency and accuracy of the beam-column element using exact dynamic stiffness matrix, buckling loads and natural frequencies are calculated for the continuous beam structures and the results are compared with F E. solutions.

Dynamic Stability Analysis of Nonconservative Systems for Variable Parameters using FE Method (유한요소기법을 이용한 비보존력이 작용하는 보-기둥 구조의 다양한 제변수 변화에 따른 동적 안정성 해석)

  • Lee Jun-Seok;Min Byoung-Cheol;Kim Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.351-363
    • /
    • 2004
  • Equation of motion of non conservative system considering mass matrix, elastic stiffness matrix, load correction stiffness matrix by circulatory force's direction change and Winkler and Pasternak foundation stiffness matrix is derived. Also stability analysis due to the divergence and flutter loads is performed. And the influence of internal and external damping coefficient on flutter load is investigated applying the quadratic eigen problem solution. Additionally the influence of non-conservative force's direction parameter, internal and external damping and Winkler and Pasternak foundation on the critical load of Beck's and Leipholz's and Hauger's columns are investigated.

A VLSI Architecture for the Binary Jacket Sequence (이진 자켓 비트열의 VLSI 구조)

  • 박주용;이문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2A
    • /
    • pp.116-123
    • /
    • 2002
  • The jacket matrix is based on the Walsh-Hadamard matrix and an extension of it. While elements of the Walsh-Hadamard matrix are +1, or -1, those of the Jacket matrix are ${\pm}$1 and ${\pm}$$\omega$, which is $\omega$, which is ${\pm}$j and ${\pm}$2$\sub$n/. This matrix has weights in the center part of the matrix and its size is 1/4 of Hadamard matrix, and it has also two parts, sigh and weight. In this paper, instead of the conventional Jacket matrix where the weight is imposed by force, a simple Jacket sequence generation method is proposed. The Jacket sequence is generated by AND and Exclusive-OR operations between the binary indices bits of row and those of column. The weight is imposed on the element by when the product of each Exclusive-OR operations of significant upper two binary index bits of a row and column is 1. Each part of the Jacket matrix can be represented by jacket sequence using row and column binary index bits. Using Distributed Arithmetic (DA), we present a VLSI architecture of the Fast Jacket transform is presented. The Jacket matrix is able to be applied to cryptography, the information theory and complex spreading jacket QPSK modulation for WCDMA.