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LINEAR PRESERVERS OF SPANNING COLUMN RANK OF
MATRIX PRODUCTS OVER SEMIRINGS

SEOK-ZUN SONG, G1-SANG CHEON, AND YOUNG-BAE JUN

ABSTRACT. The spanning column rank of an mxn matrix A over a semir-
ing is the minimal number of columns that span all columns of A. We
characterize linear operators that preserve the sets of matrix ordered pairs
which satisfy multiplicative properties with respect to spanning column
rank of matrices over semirings.

1. Introduction

Let F be a field and M, (F) be the vector space of all n x n matrices. In the
last few decades a lot of work has been done on the problems of determining the
linear maps on M, (F) that leave certain matrix relations, subsets or properties
invariant. For a survey of these types of problems see [6]. Although the linear
preservers concerned are mostly linear operators on matrix spaces over fields or
rings, the same problem has been extended to matrices over various semirings.

Marsaglia and Styan {5] studied the inequalities for rank of matrices. Re-
cently, Beasley and Guterman [1] investigated rank inequalities of matrices over
semirings. And they characterized the equality cases for some inequalities in
[2]. These characterization problems are open even over fields (see [5]). The
structure of matrix varieties which arise as extremal cases in these inequalities
is far from being understood over fields, as well as over semirings. A usual way
to generate elements of such a variety is to find a tuple of matrices which be-
longs to it and to act on this tuple by various linear operators that preserve this
variety. The complete classification of linear operators that preserve equality
cases in matrix inequalities over fields was obtained in [3]. Song and Hwang
(18)) characterized the linear operators that preserve spanning column ranks of
matrices over nonnegative reals. Recently Song ([7]) obtained characterizations
of the linear operators of spanning column rank of matrix sums over semirings.
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In this paper, we characterize linear operators that preserve the sets of ma-
trix ordered pairs which satisfy multiplicative properties with respect to span-
ning column rank of matrices over semirings.

2. Preliminaries

A semiring S is essentially a ring in which only the zero is required to have
an additive inverse ([9]). Thus all rings are semirings. A semiring is called
antinegative if the zero element is the only element with an additive inverse.
The set of nonnegative integers is an example of antinegative semiring but it
is not a ring.

A semiring S is called Boolean if S is equivalent to a set of subsets of a
given set M, the sum of two subsets is their union, and the product is their
intersection. The zero element is the empty set and the identity element is the
whole set M.

It is straightforward to see that a Boolean semiring is commutative and
antinegative. If S consists of only the empty subset and M then it is called a
binary Boolean semiring (or {0, 1}-semiring) and is denoted by B.

A semiring is called a chain if the set S is totally ordered with universal
lower and upper bounds and the operations are defined by a + b = max{a, b}
and a - b = min{a, b}.

It is straightforward to see that any chain semiring § is a Boolean semiring
on the set of appropriate subsets of S.

Let My, (S) denote the set of m x n matrices with entries from the semiring
S. If m = n, we use the notation M, (S) instead of M, ., (S).

A vector space is usually only defined over fields or division rings, and mod-
ules are generalizations of vector spaces defined over rings. We generalize the
concept of vector spaces to semiring vector spaces defined over arbitrary semir-
ings.

Given a semiring S, we define a semiring vector space, V (S}, to be a nonempty
set with two operations, addition and scalar multiplication such that V(S) is
closed under addition and scalar multiplication, addition is associative and
commutative, and such that for all u and vin V(S)and r,s € S:

1. There exists a 0 such that 0 + v = v,
2. lv=v=vl,

3. rsv =r(sv),

4. (r+s)v =rv + sv, and

5. r(u4v) =ru+rv.

A set of vectors, W, from a semiring vector space, V(S) is called linearly
independent if there is no vector in W that can be expressed as a nontrivial
linear combination of the others. The set is linearly dependent if it is not
independent.
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Note that, unlike vectors over fields, there are several ways to define inde-
pendence, we will use the definition above.

A collection, B, of linearly independent vectors is said to be a basis of the
semiring vector space V(S) if its linear span is V(S). The dimension of V(S)
is a minimal number of vectors in any basis of V(S).

The following rank functions are usual in the semiring context.

The matrix A € My, »(S) is said to be of factor rank k (rank(A) = k) if
there exist matrices B € M,  (S) and C € Mg ,,(S) such that A = BC and k is
the smallest positive integer for which such factorization exists. By definition,
the only matrix with factor rank 0 is the zero matrix, O.

The matrix A € M, ,(S) is said to be of column rank k (c(A) = k) if the
dimension of the linear span of the columns of A is equal to k.

The matrix A € My, , (S) is said to be of spanning column rank k (sc(A) = k)
if the minimal number of columns that span all columns of A is k.

It follows that

1 <rank(A) <c(4) <sc(d) <n

for all nonzero matrix A € M, »(S) (see [1, 4, 8]). These inequalities may be
strict: let

A=[3 4], B=[3-v7T V7-2]eM_;(S),

where S = (Z [/7])T is the semiring of nonnegative elements of the ring Z
[v/7]. Then rank(4) = 1 < 2 = ¢(4), and ¢(B) = 1 < 2 = sc(B) since
(3 —=+7) + (/T —=2) = 1 but any one column of B does not span the other
column over S = (Z [V7])*.

A line of a matrix A4 is a row or a column of A.

If S is a subsemiring of a field then there is a usual rank function p(A) for
any matrix A € M, »(S). Easy examples show that over semirings these func-
tions are not equal in general. However, the inequalities sc(4) > p(A4) always
hold. The behavior of the function p with respect to matrix multiplication and
addition is given by well-known Frobenius, Schwartz and Sylvester inequali-
ties. Arithmetic properties of spanning column ranks depend on the structure
of semiring of entries.

For matrices X = [z; ;] and Y = [y; ;] in My, ,(S), the matrix X oY denotes
the Hadamard or Schur product, i.e., the (i,5)" entry of X oY is z; jy ;.

We say that the matrix A dominates the matrix B if b; ; # 0 implies that
a;; # 0, and we write A > B or B < A in this case.

If A and B are matrices with A > B, then we let A\ B denote the matrix C,

where
C"_{ 0 lsz7j;£0,
7| as; otherwise.
Let Z(S) denote the center of the semiring S. The matrix I, is the n x n
identity matrix, Jy,,, is the m x n matrix of all ones, Oy, , is the m x n zero
matrix. We omit the subscripts when the order is obvious from the context
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and we write I, J, and O, respectively. The matrix E; ;, called a cell, denotes
the matrix with 1 in (¢, §) position and zero elsewhere. A weighted cell is any
nonzero scalar multiple of a cell, i.e., aF; ; is a weighted cell for any 0 # a € S.
Let R; denote the matrix whose i*" row is all ones and all other rows are Z€ro,
and C; denote the matrix whose j*P column is all ones and all other columns
are zero. We let |A| denote the number of nonzero entries in the matrix A.
We denote by A[i1,...,ik|j1,...,Ji] the k X l-submatrix of A which lies in the
intersection of the 4,...,4, rows and ji,...,7; columns.

Let Amn = {(,)i=1,...,m;j=1,... ,n}. If m = n, we use the notation
A, instead of A, ..

Let S be a semiring, not necessary commutative. A map T : M, ,(S) —
M, » (S) is called linear operator if T preserves matrix addition and scalar
multiplication on both sides.

We say that a linear operator T preserves a set P if X € P implies that 7(X)
€ P, or, if P is a set of ordered pairs, that (X,Y) € P implies (T'(X),T(Y))
ep.

An operator T on M, ,, (S
mutation matrices P € M, (
with B > J such that

) is called a (P, Q, B)-operator if there exist per-
S) and @ € M,(S), and a matrix B € M,, »(S)

(2.1) T(X)=P(XoB)Q
for all X € M,,, ,(S) or, m = n and
(2.2) T(X)=P(X o B)'Q

for all X € M, (S), where X denotes the transpose of X. Operators of the
form (2.1) are called non-transposing (P, Q), B)-operators; operators of the form
(2.2) are transposing (P, Q, B)-operators.

Unless otherwise specified, we will assume that S is an antinegative semiring
without zero divisors in the following.

We recall some results proved in [2] for later use.

Theorem 2.1 ([2, Theorem 2.14]). Let T : My, n(S) = M . (S) be a linear
operator. Then the following are equivalent:
(1) T is bijective.
(2) T is surjective.
(3) There exists a permutation o on A, , and units b; ; € Z(S) such that
T(Ei,j) = bi,on(i,j) f07‘ all (27.7) € Am,n'

Lemma 2.2 (2, Lemma 2.16]). Let T : My, (S) = M, »(S) be an operator
which maps lines to lines and is defined by T(E; ;) = b;;Eq(; ), where o is
a permutation on A, ,, and b; ; € Z(S) are nonzero elements. Then T is a
(P, @, B)-operator.

One can easily check that if m = 1 or n = 1 then all operators under
consideration are (P, (), B)-operators, if m = n = 1 then all operators under
consideration are (P, P*, B)-operators.
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Henceforth we will always assume that m,n > 2.

We say that My, » (S) has full spanning column renk if for each k <min{m,n},
My, —k,n—& (S) contains a matrix of spanning column rank n — k.

If m > n, then we can easily show that M, »(S) has full spanning column
rank. But, for m < n, My, »(S) may or may not have full spanning column
rank according to a given semiring S. For example, M 3 (Z*) has full spanning
column rank, while Mp 3 (B) is not.

The spanning column ranks of matrix products over semirings are restricted
by the following list of inequalities established in [1] :

IfO#X € Mn,n(s)a 0‘7é Ye Mn,k(S)

(2.3) sc(XY) <sc(Y).
If sc(X) + sc(Y*) > n, then
(2.4) se(XY) > 1.

Let S be a subsemiring of RY, the nonnegative reals.
If p(X) + p(Y) < n, then

(2.5) se(XY)>0.
If p(X) + p(Y) > n, then
(2.6) se(XY) > p(X) + p(Y) — n.

As it was proved in [1] the above inequalities (2.3) ~ (2.6) are sharp and the
best possible.

The following example shows that standard analogs for the upper bound of
the rank of a product of two matrices over a field do not work for spanning
column ranks.

Example 2.3. Let
11
A= (3, 7, 7) € M1,3(Z+), B = 0 1

where Z* is the semiring of nonnegative integers. Then sc(4) = 2, sc(B) = 3,
and sc(AB) = s¢(3,10,17) = 3 over Z™.

Lemma 2.4. Let B be a matriz in My, » (S) with sc(B) = 1. If all elements of
B are units in Z(8), then sc(X) = sc(P(X o B)Q) for all permutation matrices
P € M, (S) and Q € M, (S).

Proof. Let X be any matrix in My, »(S). If @ € M,(S) is a permutation
matrix, it is clear that sc(X) = se{(X@). Thus, for all permutation matrices
P e M, (S)and @ € M, (S), we have

sc(X) = sc(P'PXQ) < se(PXQ) < s5¢(XQ) =sc(X)
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from (2.5), and hence sc(X) = sc(PXQ). Thus, we claim that sc(X) = sc(X o
B).

Since sc(B) = 1, there exists a column b; = (b1 4,...,bm,)" € S™ such that
B = bje = [e1bi, eaby, ..., enbi] with e = (e,...,1,...,e,) € S™ Thus, for
any matrix X = [x1, X2,...,X,] € My, »(S), we have X o B = [(x1 01 by), (x20
eaby), ..., (Xn 0 exby)]. Let x4,,...,X;, be any columns of X. Then it suffices
to show that x;,,...,x;, are spanning columns for all columns of X if and
only if (x4, oe;by), ..., (%, ©e; b;) are spanning columns for all columns of
X o B. Let se(X) = k and x4, ...,X be spanning columus for all the columns

of X. Then x, = Zk cr;x; for all r = 1,...,n with ¢,; € S. Then we

F=1
have (x,0e.b;) = Z§:1 ¢r, (x5 0e.bi), equivalently, x; o eyb;, ..., X, o eyb; are
spanning columns for all columns of X o B.

Conversely, assume that sc(X o B} = k and (x; o e1b;), ..., (xx 0 exb;) are
spanning columus for all the columns of X ¢ B without loss of generality. Then
for any column of X o B we can write (x, o e,b;) = Zle fi(x; oe;by) for

fi€S. Letby = (b ",... b 1)t €S™. Then
k
(xr 0 e;b;) o by’ = <Z fi(xj0 8jbi)) oby/,
i=1

equivalently (e,bjob;')ox, = Zj__:l fiej(bso b;') o x; since all entries of B are
in Z(S). Hence e,x, = Z;;l fie;x; because by oby’ = (1,...,1)* € S™. That

. k — . .
is, X, = 3 j=16r ! fie;x;, equivalently, x1, ..., X are spanning columns for all
columns of X. O

Let X = { :23 } be a matrix in My ; (Z™1). Then we have that sc(X) = 1, but

sc(X?) = 2. Thus, in general, it is not true that for a matrix X € M, . (S),
sc(X) = 1 if and only if sc(X?) = 1.

Below, we use the following notations in order to denote sets of matrices
that arise as extremal cases in the inequalities (2.3) ~ (2.6) listed above:

Iy = {(X,Y) € M,(S)?] s¢(XY) =sc(Y)};

o = {(X,Y) € M, (S)* | sc(XY) = 0};

I = {(X,Y) € M,(S)? | s¢(X) +sc(Y?) > n and sc(XY) = 1};
g = {(X,Y) € Ma(S)? | 5¢(XY) = p(X) + p(Y) — n}.

In the following sections, we characterize linear operators that preserve the
sets Iy, [y, Iy, and Ilg.

3. Linear preservers of IIg

Lemma 3.1. If T : M, (S) — M, (S) is a surjective linear operator which
preserves [y, then T preserves lines.
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Proof. By Theorem 2.1, there exist a permutation ¢ on A,, and units b; ; € Z(S)
such that T(E; ;) = b;;Ey(i, ;) for all (i,7) € A,. Suppose that T~ does not
map columns to lines, say, without loss of generality, that T~1(E; 1 + Fa,1) >
Ei 1+ Es 3. Then T(I) has nonzero entries in at most n — 1 columns. Suppose
T(I) has all zero entries in column j. Then for X = I and Y = T7Y(Ej,),
we have XY =Y however, T'(X)T(Y) = O. This contradicts the fact that T
preserves I1;,. Suppose that 7! does not map rows to lines. Say, without loss
of generality, that T_I(El,l + Elyg) Z E1’1 + EQ’Q. That is T(El,l + E2,2) =
b, 1By + b2 2Er . Then for X = b E1 + b;3Ez + [O2 ® I s, T(X) has
spanning column rank at most n — 1 since either the first two columns of T'(X)
are equal or at least one of the columns from the 3" through the n'! is zero.
Let Y = T-1(I), then we have that (X,Y) € Iy, since sc(XZ) = sc(Z) for
any Z, while sc(T(X)I) = sc(T(X)) = n~1 < sc{I) = sc(T(Y)) so that
(T(X), T(Y)) ¢ 11, a contradiction.

Similarly, if T=1(E1 1 + E2.1) > E1,1+ E» then the second column of T'(X)
is zero and the same pair (X,Y) € II; gives the contradiction.

Thus 77! and hence T map lines to lines. |

Lemma 3.2. Let T : M, (S) = M., (S) be a linear operator defined by T(X) =
X o B, where B = [b; ;] € M,(Z(S)), bi,; are units for oll (i,5) € A,. If T
preserves Iy, then sc(B) = 1. If, in addition, S is commutative then there
exist diagonal matrices D, E with the invertible elements on the main diagonal

such that T(X) = DXE.

Proof. Suppose to the contrary that sc(B) > 2. Since all b; ; are units it follows
that there exist k,l such that B[1,...,n | k] does not span B[1,...,n | [] and
conversely. Without loss of generality one may assume that k = 1,1 = 2.

Let T preserve Il;,. Consider the pair X = E 1, Y = C; + 5. One has that
XY = FEy1 + Eip and s¢(XY) = 1 =sc(Y), ie., (X,Y) € II;. However, the
spanning column rank of (X o B)(Y o B) = b} 1 E1,1 +b1,1b12E) 2 is 1 since b; ;
are units and commute with all elements from S. Thus sc((X o B)(Y o B)) =
1 # 2 = sc(Y o B) since the first two columns of Y o B are the same as those of B
and the other columns are zero. Hence, (T(X),T(Y)) ¢ II1, which contradicts
the assumption that T preserves II;. Therefore sc(B) = 1.

Thus it follows that there exist column b; = (b1 4,...,bn ;)" such that B =
bie with e = (e1,...,€;-1,1,€i41,...,€,) € S™ Let S be commutative,

D= diag(bl’i,...,bn,i) € Mn(S),

E= diag(el,...,ei_l,1,ei+1,...,en)EMR(S)
be diagonal matrices. Then it is straightforward to check that X o B = DXE
for all X € M, (S). O

Theorem 8.3. Let T : M, (S) —» M, (S) be a surjective linear operator with
n > 4. If T preserves Iy, then T is a nontransposing (P, Pt, B)-operator and
sc(B) = 1 with B = [b; ;] € M, (Z(S)) and units b; ; for all (3,5) € A,,.
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Proof. Assume that surjective operator T preserves II;. By applying Lemma
3.1 and Theorem 2.1 to Lemmas 2.2 and 3.2 we have that if T preserves IIj,
then T is a (P, @, B)-operator and sc(B) = 1.

To see that the operator T(X) = P(X o B)'Q does not preserve Iy, it
suffies to consider Tp(X) = X'D, where D = QP, since a similarity and a
Hadamard product with a matrix of spanning column rank 1 and invertible
entries preserve II;,. Let

@ Li_s.

o OO

1 10
X=MD™(110|PI-s)andy =
001

|l i e R an
= O O =
oo oo

0

Then (X,Y) € I while (X*D,Y*D) ¢ II,. Thus Ty and hence T does not
preserve I1j,.

It remains to prove that Q = P!. Assume to the contrary that QP # I.
Suppose X — (QP)X transforms the ! row into the ¢ for some r # t. We
consider the matrix X = 7., E;;, Y = E,,. Thus (X,Y) € IIy. Then for
certain invertible elements b; ; € S we have that

T(X)T(Y) = P(X o B)QP(Y 0 B)Q = P(}_ biiEi)(br., Er,»)Q = 0,
it
ie, (I'(X),T(Y)) ¢ Il which is a contradiction. ]

Corollary 3.4. Let T be a surjective linear operator on M, (S) with n > 4
and S be commutative with 1 + 1 # 1. If T preserves I, then there exist an
invertible matriz U and an invertible element a such that T(X) = aUXU !
for all X € M, (S).

Proof. Suppose T preserves II;. By Theorem 3.3, T' is a non-transposing
(P, P, B)-operator, where sc(B) = 1 and all elements of B are units in Z(S).
That is,

(3.1) T(X) = P(X o B)P!

for all X € M, (S). Since sc(B) = 1, there exists b; = (b1;,...,bm )" among
the columns of B such that B = bje with e = (e1,...,e;-1,1,€i41,...,€p).
Since bj;; are units, e; are invertible elements in S for all j =1,...,n. Let D =

diag(b1 s,-.-,bmi) € Mu(S) and E = diag(e,...,e,) € M, (S) be diagonal
matrices. Since S is commutative, it is straightforward to check that X o B =
DXE for all X € M,,, ,(S). Thus (3.1) becomes T(X) = PDXEP*. Let us
show that ED is an invertible scalar matrix.

Define L(X) = (EPY)T(X)(EP')~! = EDX for all X € M, (S). Since T
preserves IIy, if and only if L does, it suffices to consider L(X) = EDX. Let
G = ED. Then G = diag(gi,...,gn) is an invertible diagonal matrix. Assume
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that g; # ¢g2. Consider matrices

0411 1100
401 1 1100
(3-2) A=l1101| ™ B=]g 011
1110 0011

Let X = A®Op_y and Y = GY(B @ O,—4). Since all columns of A are
linearly independent, it follows that

sc(A) =sc(X) =sc(L(X)) =4 and sc(B) =sc(Y) =sc(L(Y)) = 2.

Furthermore,
49 igy) g3 +oi g5 tor
49 49, 5 g, ;s tgs
XY = _191 ) _191 i g3 _194 g3 _194 ® Oy
911+921 911+921 941 941
9 t9 g t9 g3 g3

has the spanning column rank 2 since g1 # g». That is (X,Y) € II;. But

4.4 2 2
4 4 2 2

LOLY)=G || 5 5 1 1 |®0ns
2 21 1

has spanning column rank 1 and hence (L(X), L(Y)) ¢ 1. This contradiction
shows that g, = go. Similarly, if we consider a matrix

0
1
1
1

A=

—_ O
= O e
=

then the parallel argument shows that g3 = g4. Generally, if n > 5, then
we can split zero block into two parts and take X' = O, ® A ® Op_,_4 o1
X' = 0, ® A ® 0, _._4 for appropriate r. Therefore we have that G is an
invertible scalar matrix. That is, G = ED = al for some invertible element «,
equivalently E = aD~!. If we let U = PD, then

T(X)= P(DXE)P! = o(PD)X(PD)™! = aUXU™!
for all X € M, (S). Thus the result follows. 0O
Over chain semirings, the above results have the following improvement.

Theorem 3.5. Let S be a chain semiring and T be a linear operator on M, (S)
with n > 4. Then T strongly preserves Iy if and only if there exists a permu-
tation matriz P such that T(X) = PX P! for all X € M, (S).
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Proof. One can easily show that all operators of the form T(X) = PXP!
strongly preserves Il .

Suppose T strongly preserves I1;,. We want to show that there exists 5 € S
such that ST is surjective on M, (8S). In order to show this, it suffices to
check that for each pair of indices (7, j) there exist Y € M, (S) and a € S such
that T(Y) = aFE; ;. If this is not the case or if there is a cell whose image
is not dominated by a cell, then there exists a (0, 1)-matrix M and pair (r, s)
such that m,; = 0 and T(M) > T(J). Denote G = T(M) = [g;,;]. Then,
for A = J\E,,, and a = min{g; ; | g;; # 0} we have that T(a4) = T(aJ).
Since sc(ad) = 2 and sc((@d)?) = sc(aJ) = sc((a])?) = 1, (ad,ad) ¢ I,
while (aJ, aJ) € I, a contradiction since (T'(aJ),T(aJ)) = (T(aA), T(aA)).
Thus there is no such a matrix M with a zero entry such that T'(M) > T'(J).
It follows that the image of a cell dominates only one cell and that for 5 =
min{h; ;|T(J) = H = [h;;]}, BT is surjective on M, (8S). By Theorem 3.3,
BT(X) = PXP? for all X € M, (8S). Thus, there exists a matrix B € M, (S)
with B > J such that T(X) = P(X o B)P? for all X € M, (S).

Suppose that b; ; < 1 for some (7, 7). Consider a matrix X = J\E; ;+b; ; E; ;.
Then we have T'(X) = T(J). Since sc(X) = 2 and sc(X?) = sc(J) = 1,
(X,X) ¢ I, while (T'(X),T(X)) = (T'(J),T(J)) € I, a contradiction. Thus
B = J and the theorem follows. O

4. Linear preservers of Il

Recall that
Iy = {(X,Y) € M,,(S)?| sc(XY) = 0}.

Lemma 4.1. Let T be a surjective linear operator on M, (S). If T preserves
Iy, then T maps columns to columns and rows to rows.

Proof. By Theorem 2.1, there exist a permutation o on A, and units b; ; € Z(S)
such that T(E; ;) = b; ;E,; ;) for all (i,7) € A,.

Suppose T does not map columns to columns. Say T'(C;) is not a column.
Then T'(J \ C;) has no zero column. It follows that (J \ C;, E; ;) € Ip, while
(T(J\C;),T(E;;)) € I, a contradiction.

If T does not map rows to rows, then T'(R;) is not a row for some i. Thus,
T(J\R;) has no zero row. It follows that (E; ;, J\R;) € Iy, while (T'(E; ;), T(J\
R;)) ¢ Iy, a contradiction. O

Theorem 4.2. Let T be a surjective linear operator on M, (S). Then T pre-
serves Iy if and only if T is a non-transposing (P, P, B)-operator, where all
elements of B are units in Z(S).

Proof. Suppose T preserves IIp. Since, by Lemma 4.1, T preserves columns
and rows, it preserves lines and hence, by applying Theorem 2.1 to Lemma 2.2,
T is a (P, Q, B)-operator, where all elements of B are units in Z(S). Since T
maps columns to columns, T must be a non-transposing (P, @, B)-operator and
hence T'(X) = P(X o B)Q for all X € M, (S). Suppose that QP # I. Then
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QPE, ; = E; . for some distinct indices r and {. Now, (Ey,, E, ;) € I, while
(T(E11),T(E,s)) ¢ o because

T(EI,I)T(Er,s) = bl,lbr,s(PEl,sQ) 75 0.

This contradiction shows that QP = I and hence Q = Pt.
The converse is easily established since S is antinegative. O

5. Linear preservers of II;

Recall that
II; = {(X,Y) € M,,(S)?] sc(X) +sc(Y") > n and sc(XY) =1k

Lemma 5.1. Let T be a surjective linear operator on M, (S). If T preserves
Iy, then T preserves lines.

Proof. By Theorem 2.1, there exist a permutation o on A, and units b; ; € Z(S)
such that T(E,’]) = bi,on-(i,j) for all (Z,]) € An

Suppose I' does not preserve lines. Without loss of generality, we may
assume that T(E; ;) and T(Ey,) lie in a line, where i # k and j # [. Let
T(Ei’j) = bi,jEs’t. Then either T(Ekyl) = bk,lEs,t’ or T(Ek’l) = bpiEs 4.
In both cases, we have sc(T(E;; + Er;)) = 1 (in the first case since b; ; is
invertible, in the second case, there is only one non-zero column in the matrix).
Let Y' € M, (S) be a matrix such that Y' + E; ; + E), is a permutation
matrix. Consider matrices X = E; ; + E; and Y* =Y’ + E} ;. Then we have
XY = Ej 4, and hence (X,Y) € II; since s¢(X) +sc(Y}) =2+ (n-1)=n+1
and sc(XY) = 1. But we have sc(T'(X)) + sc¢(T(Y)?) < n since sc(T(X)) =1
and sc(T(Y)!) < n— 1. Thus, (T(X),T(Y)) € I1;, a contradiction. O

Theorem 5.2. Letn > 3 and T be a surjective linear operator on M, (S). If T
preserves Iy then T is a non-transposing (P, Pt, B)-operator, where sc(B) = 1
and all elements of B are units in Z(S).

Proof. Suppose T preserves I1;. By applying Theorem 2.1 to Lemma 5.1, T is
a (P, @, B)-operator, where sc(B) = 1 and all elements of B are units in Z(S).
First, we show that the operator T{X) = P(X o B)!(Q does not preserve II;.
Let

_ O L _
D=QP, A= [ s ] X =DA
and Y = I,,_; ®[0]. Then we can easily show that (X,Y) € II; and
(XoB)!D(Y oB)! = (A'D'oB")D(Y o B') = (A’ o B!D)(Y o BY)

= cFEp_11+cE,;
for some units ¢;,c; € Z(S). It follows from Lemma 2.4 that
se(T(X)T(Y)) = se((X o B)'D(Y o B)') = 2,

a contradiction. Thus, we have established that T is a non-transposing (P, ), B)-
operator; T(X) = P(X o B)Q, where all elements of B are units in Z(S).
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Next, we claim that QP = I. Assume to the contrary that QP # I. Then
there exist p,s,r,t € {1,2,...,n} with p # s, r # ¢, s # t and p # r such
that (QP)R, = R, and (QP)R, = R;. Consider matrices X = ., E;; and
Y = E,, + E,». Then (X|Y) €1l since sc(X) +sc(Y ) =(n—-1)+2>n
and sc(XY) =sc(E,,) = 1. But

p(Z E;;o B) QP((Eypp + E.r) o B)Q
iEr

= P(Z bi,iEi,i> (bp,pEsp + brr By )Q
i#e
= P(bs,sbp,pEs,p + bt,tbr,rEt,r)Q
has spanning column rank 2 since s # ¢ and p # r, a contradiction. Hence
QP = I and hence Q = P*. That is, T(X) = P(X o B)P?.

It remains to check that sc(B) = 1. Consider (J,I) € II;. Then we have
sc(T(J)) + sc(T(I)?) = sc(J) + sc(I*) > n. Since T preserves II;, it follows
that sc(T'(J)T(I)) = 1. Let V = I o B. Then V = diag(bi 1,...,bn ) is an
invertible matrix, and hence it follows from Lemma 2.4 that

1 =sc{T(JYT({I)) =sc{(J o B)(I ¢ B) = s¢(BV) = sc(B).

Thus the Theorem follows. 0

T(X)T(Y)

Corollary 5.3. Let S = B, Z% or a chain semiring, and T be a surjective
linear operator on M, (S) with n > 3. Then T preserves I} if and only if
there is a permutation matriz P € M, (S) such that T(X) = PXP* for all
X € M. (S).

Proof. Suppose T preserves II;. By Theorem 5.2, T is a non-transposing
(P, Pt, B)-operator, where all elements of B are units. Note that if S=B, Z+
or a chain semiring, “1” is the only unit element in S, and hence B = J. Thus,
there exists a permutation matrix P € M, (S) such that T(X) = PXP? for all
X € M, (S).

The converse is easily established. (]
6. Linear preservers of Ilg
Recall that
Mg = {(X,¥) € Ma(S)? | sc(XY) = p(X) + p(Y) ~ n}.

Lemma 6.1. Let S be any subsemiring of R™, o be a permutation of A,, and
T be defined by T(E; ;) = b; jEq(i5) for all (i,5) € Ay, where all b; ; are units.
If T preserves llg, then T preserves lines.

Proof. If T does not preserve lines, then, as in the proof of Lemma 5.1, there
exist indices 4,4, k,1, ¢ # k, j # [ such that T(E; ;) and T'(E},) lie in a line.
Let X' € M, (S) be a matrix such that X = X' + E; ; + Ej, is a permutation
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matrix. Then (X, 0) € [Ix. However, sc(T(X)) < n — 1 since either T(X) has
a zero column or T'(X) has two proportional columns since b; ; is a unit. Thus,
p(T(X)) <n—1 and hence (T(X),0) ¢ Ilg, a contradiction. O

Theorem 6.2. Let S be a subsemiring of RY, and T be a surjective linear
operator on M, (S). If T preserves Ilg then T is a non-transposing (P, P*, B)-
operator, where sc(B) = 1 and all elements of B are units.

Proof. Suppose T preserves Ilg. By applying Theorem 2.1 to Lemma 6.1 and
2.2, T is a (P, @, B)-operator, where all elements of B are units. First, we show
all transposing (P, Q, B)-operators T(X) = P(X o B)!Q) do not preserve Ilg.
Let QP =D, X =DEy;, Y = Y7 Eit1i. Then (X,Y) € Ig. But

T(X)T(Y) = P(DE;, o B)'D(Y o B)'Q
= P(Elyl o Bt)(Yt o Bt)Q = P(blwlbgylEl,z)Q 75 O

Hence sc(T(X)T(Y)) > 0 = p(T(X)) + p(T(Y)) — n; that is, (T(X),T(Y)) ¢
IIg, a contradiction. Thus, T is a non-transposing (P, @, B)-operator; T(X) =
P(X o B)Q.

Let us check that @ = Pt If QP # I, then there exist two distinct in-
dices s and t in {1,...,n} such that (QP)R, = R;. Let X = Z#s Ei;, Y =
E, ;. Then it follows from Lemma 2.4 that sc(T'(X)) = s¢(X) = n —1 and
sc(T(Y)) = sc(Y) = 1. Furthermore, we have XY = O and T(X)T(Y) =
P(b4bs s By 5)Q # O. Thus, (X,Y) € Ilg, while (T'(X),T(Y)) ¢ g, a contra-
diction. Hence QP = I or Q = Pt.

It remains to show that sc(B) = 1. Assume to the contrary that sc(B) > 2.
We lose no generality in assuming that sc(B[1, 2|1, 2]) = 2. Consider the matrix
b1 b
bpi bz
in My, (S). Then sc(X) = sc(X?) = n. Note that from the invertibility of b; ;
it follows that p(X) = n. Indeed, if b;; = Abj,, i = 1,2, for some A € RY,
then A = by bi s € S which contradicts sc(B[1,2[1,2]) = 2. Thus (X, X) € Ilg
because sc(X?) = n = 2p(X) — n. But sc(T(X)) = sc(T(X)?) = p(T(X)) =
n — 1, while 2p(T (X)) — n = n — 2, a contradiction. O

X:[ ]@u4
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