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A COMPARISON OF MAXIMAL COLUMN RANKS
OF MATRICES OVER RELATED SEMIRINGS

SEOK-ZUN SONG

1. Introduction

Let A be areal mxn matrix. The column rank of A is the dimension
of the column space of A and the maximal column rank of A is defined
as the maximal number of linearly independent columns of A. It is
well known that the column rank is the maximal column rank in this
situation.

However, we can also consider matrices whose entries come from
another kind of algebraic system, such as a semiring or Boolean alge-
bra. In this different context, the notions of column rank and maximal
column rank can still be defined, but the two ranks do not necessarily
agree. Indeed, Hwang, Kim and Song [6] compared the column rank
and the maximal column rank for matrices over various semirings and
found that except for small values of m and n, the two ranks did not
agree in general.

In this paper we continue the study of maximal column rank, but
instead of fixing the algebraic system and comparing the two ranks
as in [6], we will compare the maximal column rank when the matrix
is considered over different algebraic systems. For example, we can
consider the matrix

I 10
A=1|1 0 1
61 1

as a matrix over R, the real numbers, or as a matrix over Z, . the in-
tegers modulo 2. Considered as a matrix over R, the maximal column
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rank of A is three, while considered as a matrix over Zo, the maximal
column rank of A is two (the third column is the sum of the first two).
More generally, given semirings S and T, suppose that A is a matrix
which can be considered either as a matrix over S or as a matrix over
T. Under what circumstances is the maximal column rank of A over
S equal to the maximal column rank of A over T7 Is there any rela-
tionship? We will investigate these questions for several well-studied
semirings, including the reals. the nonnegative reals, the integers, the
nonnegative integers, the integers modulo a, finitely generated Boolean
algebras, and fuzzy sets.

In section 2, we give necessary definitions and preliminary results,
and in section 3, we establish some general inequalities for maximal
column rank function, while in section 4, we obtain the cases of equal-
ity of maximal column ranks. In section 5, we compare the maximal
column rank of a given m x n matrix over both a semiring and its
subsemiring as m and n vary.

2. Definitions and preliminaries

A semiring consists of a set S and two binary operations on S,
addition and multiplication, such that:

(1) S is an abelian monoid under addition (identity denoted by 0)

(2) S is a monoid under multiplication (identity denoted by 1)

(3) Multiplication distributes over addition; ard

(4) s0=0s=0 for all s in S.
Usually S denotes both the semiring and the set. Many combinatorially
interesting semirings are the nonnegative integers Z*, the nonnegative
reals RT. The Boolean algebra [9] of subsets of a k-set, denoted By, is
also a semiring, where addition corresponds to set union and multipli-
cation corresponds to set intersection. In the sequel, we will often want
to consider By to be a subsemiring of B; when & < j. This is easily
accomplished by considering the j-set for B; to be {ay,as,... .a;} and
then associating By with the isomorphic subsemiring of B; consisting
of the set of all unions and intersections of {a1},{a2}.... , {ar—1} and
{ak,... .a;}. Henceforth we will assume that B, is a subsemiring of
B; whenever k < j.

Let S be any set of two or more elements. If S is totally ordered by
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<, that is, S is a chain under <, then define z + y as max{x,y} and
xy as min{z,y} for all z,y in S. If S has a universal lower bound and
a universal upper bound, then S becomes a semiring: a chain semiring
[2]. In particular, the chain semiring generated by the numbers in the
interval [0,1] is denoted F, and is called the fuzzy numbers [8]. As above
for the Boolean semirings, a chain semiring that is a subset of another
may be considered a subsemiring by appending the zero and identity
of the larger to the smaller. Henceforth we will assume that a chain
semiring that is a subset of another is a subsemiring.

Given any semiring S, we denote the set of 7 x m matrices with
entries in S by M,, »(S). Addition of vectors (m x 1 matrices), addition
and multiplication of matrices, and scalar multiplication are defined as
if S were a field. A set of vectors is a semimodule [3] if it is closed under
addition and scalar multiplication. A subset W of a semimodule V is
a spanning set if each vector in 'V can be written as a sum of scalar
multiples (i.e., a linear combination) of elements of W. As for real
fields, we can define three concepts of rank for a matrix A € Mo n(S).

The semiring rank [1] of A, rg(A), is the minimum integer k such
that A can be factored as A = XY, where X ¢ M,, ;(S) and Y €
My »(S).

The column space of a matrix A is the semimodule spanned by
the columns of A. Since the column space is spanned by a finite set
of vectors, it contains a spanning set of minimum cardinality; that
cardinality is the column rank [2] of A, cg(A).

A set U of vectors over S is linearly dependent if for some u € U,
u is a linear combination of another elements of U. Otherwise U is
linearly independent. The mazimal column rank [6] of A, mg(A), is
the maximal number of linearly independent columns of A. Our goal
here is to compare the values of mig(A) as S varies over some familiar
semirings such as R,R* Z,Z*,Z, and By. We give an example:

EXAMPLE 2.1. Let A = [2 3 4 5] be a matrix in M; 4(Z%).
Then we have rz+(A) = 1. But ¢z (A) = 2 since the first two columns
span the column space of A. And mgz+(A) = 3 since the last three
columns are the maximal linearly independent columns of A.

The following result is easily established.

PROPOSITION 2.2. Suppose that S is a semiring, and that A is a
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p X q matrix over S. If X = ‘/8 8] , where the zero block on the
diagonal has arbitrary dimensions, then cg(A) = ¢g(X) and mg(A) =

ms(X).

3. The inequality cases in maximal column rank

In this section, we establish some general theorems about the maxi-
mal column ranks of matrices whose entries lie in two related semirings.
Suppose that S and T are semirings and h : S — T is a semiring
homomorphism. We identify an m x n matrix A=|a;;] whose entries lie
in S, with the m x n matrix H(A) whose (, j)-th entry equals h(a;;).
Thus
H : My o(S) — My, o(T),

and any matrix A € M, ,(S) can be viewed as a matrix H(A) €
M,y »(T). Our first result can be summarized as follows: a homomor-
phism does not increase the maximal column rank.

THEOREM 3.1. Let S and T he semirings and h : S — T be a

semiring homomorphism. Then ms(A) > mr(H(A)) for every matrix
A€ My, ,(S).

Proof. Let mg(A) = k and ler A = [a;|az]...la,], where a; is a
column vector of A foreach ¢ =1.2,...,n. Put

H(A) = [H(a1)|H (az)] ... |H(an)],

where each H(a;) represents the entrywise image vector of a, under
h. We will show that the maximal number of linearly independent
columns of H(A) is at most k. To show this, let us choose any k + 1
column vectors H(a;,), H(ai,),..., H(a;,,,) of H(A). Then the col-
umn vectors a;,,dq,, ... 04, of A are linearly dependent over S by
the maximality of k. Hence there exists at least one a;, among them
such that

a;

» = T104, + 1o, + ...+ Tp—10i, + Tpy1Gi,,, + o T,

with r; € S.
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Since A is a semiring homomorphism, so is H. Thus

H(a;,) = H(ria,) + H(raay,) + ... + H(rp_1a;, ) + H{rpp1a; )
+ oo+ Hrgprag,,,)
= h(ri)H(a;,) +h(r2)H(as,) + ...+ h(r,_1)H(a;,_,)
+ h(rps1)H(as,,, )+ .. 4+ h(reg) H(a,, )

Since each h(r;) € T, we have

is a linearly dependent set over T'. Thus the maximal number of lin-
early independent columns of H(A) is not greater than k. That is,
ms(A) > mr(H(A)). 0

If S is a subsemiring of T, then the canonical injection of S into T
is a homomorphism, and hence by Theorem 3.1, mg(A) > mr(A) for
each matrix A € M,, »(S). In this case, we abbreviate the above to
ms > MT.

COROLLARY 3.2. If S is a subsemiring of T, then mg > mr. In
particular,

(1) if j > k, then mp, > mp,

(2) mgz+ > mg, mg > mp, mp > mpg for any subring P of the reals
with identity and

(3) mgz+ > mp+, mp+ > mys for any subserniring Pt with iden-
tity of Rt,

Let A = [a;;] be an m x n matrix whose entries belong to a semiring
S. We define the pattern of A to be the m x n matrix A = [a;;] where
a;; = 0if a;; = 0 and a;; = 1 otherwise.

COROLLARY 3.3. Let S be an antinegative semiring (that is, only
0 has an additive inverse) with identity 1 and B, be the two element
Boolean algebra {0,1}. Then my, (A) < mg(A) for all matrices A €
My (S). In particular, if A is any (0,1) matrix, then mp,(A) <
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Proof. The mapping h : S — B; defined by hia) = 0 if ¢ = 0 and
h(a) = 1if a # 0, is a semiring homomorphism. The result now follows

from Theorem 3.1. O
ot 1 2 3

EXAMPLE 3.4. Let S = R* andlet A = 45 6| Then H(A) =

A= 1 1 1 and therefore mg. (A) = 2 since any two columns are

linearly independent b_l{t the second column can be spanned by the
others. Clearly, mp,(A) = 1. This shows that strict inequality can
hold in Corollary 3.3.

COROLLARY 3.5. Let a and b be integers with a,b > 2. Suppose A
Is a matrix with entries in {0,1,2,...,a — 1}. Then

mz, (A) < mgz,,(A) < mg(A).

Proof. Consider the canonical mapping h : Z — Zg, and k :
Zay — Zo. Then h and k are ring homomorphisms. The results
follow from Theorem 3.1. O

4. The equality cases in maximal column rank

In section 3, we obtained some general inequalities for maximal col-
umn ranks of matrices over various semirings. We find certain cases
such that the given matrix has the same maximal column rank over
different semirings. In this section, we discuss the equality cases for
some types of semirings.

THEOREM 4.1. If A € M, »(Z), then we have mz(A) = mg(A).

Proof. Tt is well known that the column rank of A over Z equals the
column rank of A over R. Since, over R, ¢(A) = m(A), we will show
that mz(A) = cz(A). In general mz(A) > cz(A). If cz(A) = k, then
the column space of A has dimension k. So any k& + 1 columns of A
are linearly dependent over Z. Hence mz(A) < k. g

THEOREM 4.2. Let C,; and Cq be chain semirings such that C; is a
subsemiring of Cy. If A € My, n(C,), then mg, (A) = mg,(A).
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Proof. Since C; C Cy, we have
(1) me, (A) = mg,(A)
by Corollary 3.2. Let C(A) be the chain semiring consisting of 0,1 and
the entries in A. Then C(A) is a chain semiring such that C(A) C C;.
It follows that
(2) me(a)(A) = me, (A)
by Corollary 3.2. Let h : Co — C(A) be the map such that
ha)= > b
bEU(a)

for a € Cy, where
Ua) ={be C(A)b < a}.

If a;,az € Cy with a; < ag, we find that U(a;) € U(az) and hence
h(a1) < h(ag). It follows that h is a homomorphism from Cy to C(A).
By the construction, H(A) = A. Therefore, we hLave

(3) mg,(A) > meay(H(A)) = mea)(A)
by Theorem 3.1. Hence (1),(2) and (3) imply that mc, (A) = mg,(A).
O

THEOREM 4.3. Suppose that j < k, so that B; C By. If A €
My n(Bj), then mBJ(A) =mp, (A).

Proof. Since B; C By , mp,(A) > mp,(A). Let B(A) be the
Boolean algebra generated by 0 (empty set), 1 (the j-set) and the en-
tries of A. Then B(A) C B;. Thus mpg(a)(A) > mp,(A) by Corollary
3.2. By the analogous method of the proof in Theorem 4.2, we have
mp,(A) = mp, (A). O

COROLLARY 4.4. For any (0,1) matrix A, any chain semiring C
which contains 0,1 and any integer k with k > 1, we have

mp, (A) =mp, (A) = mc(A) = mp(A)

where F is the semiring of fuzzy numbers.
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Proof. By Theorem 4.3, mp,(A) = mp, (A) for any k¥ > 1. Since
the Boolean algebra B; is also a chain semiring and it is contained
in any chain semiring C, and in particular, in the semiring F of fuzzy
numbers. Thus by Theorem 4.2, both m¢c(A) and mg(A) are equal to
mp, (A) . O

5. The comparison of maximal column ranks

In this section, we compare the maximal column rank of a given
matrix over both a semiring and its subsemiring.

Suppose that S is a subsemiring of a semiring T. Let F(S,T,m,n)
denote the maximum integer k such that there exists a matrix in
M, »(S) with maximal column rank k& and for every A € M, .(S)
with mg(A) < k we have mg(A) = mp(A). Then F(S,T,m,n) >0
since for any semiring S, mg(A) = 1) if and only if A is the zero matrix.
In section 4, we have obtained the following equalities:
mp, =mp, for any j <k, and m¢, = mc, for any chain semirings C,
and C, with C; C C,.

Also, we have shown that for any matrix A € Mpa(RT),

(4) mp, (A) < mg+(A)

where A is the pattern matrix of A. And we have

(5) MR < Mg+
(6) MR+ < Mzs
(7) mz, < MZ0

for any positive integers a and b,
(8) mz, = mgz

for any positive integer a.

We will show that equality does not hold in general for any of (4)-
(8). Our approach will be to investigate the values of F(S,T,m, n) for
appropriate semirings S and T. First we will look at (4).
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EXAMPLE 5.1. Let

t 0 1
X=|110
1 11

Then mp, (X) = 2 since the last two columns generate the first column.
Thus the maximal number of linearly independent columns is 2, while

mg+(X) = 3 since the three columns of X are linearly independent
over R*. Thus mp, (X) < mg+ (X).

THEOREM 5.2. Suppose that A € M,, ,(B;).

(1) If min(mn,n) < 2, then mpy, (A) = mg+ (A).

(2) Let min(m,n) > 3. Then mp, (A) = mg+ (A) whenever
mp+(A) < 2, while there exists an mxn matrix Y € Mo n(By)
such that mp, (Y) < mg+(Y) whenever mg+ (Y) > 3.

Proof. (1) If m =1orn =1, then it is clear. Suppose that m > n =
2. Let A = [a;]ay] be an mx2 matrix. If mp, (A) = 1, then a; = bay or
az =ba; for b € By. But b=0or 1, so mg+(A) = 1. If mp, (A) =
then a; and ap are linearly independent over B,. Thus there exists
at least one positive integer j such that aj; # a.2. This implies that
mg+(A) = 2. Since we have mp, (A) < mg+ (A’ by Corollary 3.3, it
follows that mp, (A) = mg+ (A).

Suppose n > m = 2. Let A = [ai|ag|...|a,] be a 2 x n ma-
trix. Since each entry of A is either 0 or 1, the only forms of a, are

[(1)] , [(1)} , {ﬂ , [8} Thus the maximal column rank of A on Rt is

at most 2. Therefore, if mp (A) == 2, then A has at least two columns
among the above three nonzero columns. It follows that mys (A) =
Also if mp,(A) = 1, then there exists one nonzero column a; such
that a; = b;a; with b; € B;. But b; = 0 or 1, so mg: (A) = 1. Using
mp, (A) < mg+ (A) by Corollary 3.3, we have mp, (A) = mg+ (A).

(2) If mr+(A) = 1, then clearly mp,(A) = ., and vice verse. If
mpg+(A) = 2, then mp (A) < 2 by Corollary 3.3. But mp,(A) =1 if
and only if mg+(A) = 1. So mp,1A) = 2.

Now, consider the matrix X in Example 5.1 and let

X 0
Y“{o o}@]“
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where I, is an r x r identity matrix and the zero blocks are suitable
zero submatrices such that Y is an m x n matrix. Then Y is the desired
one.

For example, we can construct an 10 x 9 matrix Y over By such that
me+(Y) =6>5=mpg, (V) as follows;

with a 4 x 3 zero submatrix 03. O

COROLLARY 5.3. Suppose that A € M,, ,(R™). If min(m,n) =
1, then mp, (A) = mg+(A). On the other hand, if min(m,n) > 2,
then there is a matrix Y € Mp, ,(R") such that mp, (V) < mg+(Y),
whenever my+ (Y) > 2.

Proof. For the case min(m,n) = 1, it is clear. Consider a matrix

X = [1 2} over R*. Then mg+(X) = 2 but mg, (X) = 1. Thus we

3 4
. X 0
can construct an m x n matrix Y such that ¥ = 0 0 & I, as the
case of Theorem 5.2 (2). ' O

The following example gives some insight into inequality (5.3).

EXAMPLE 5.4. Let A = [3 5! be a 1 x 2 matrix. Then the sec-
ond column of A is 5/3 times the first, so there is only one linearly
independent column in A over R* and hence mg+ (A) = 1.

However, no integer multiple of the first column equals the second,
and vice versa, so the two columns of A are lineariy independent over
Z* and hence we have that mgz+ (A) = 2 > mg+ (A).

Thus we have the following comparison theorern..
THEOREM 5.5. F(Z*,R*,m,n) = 1.

Proof. Since we know that any nonzero matrix has maximal column
rank at least 1, it is clear that mg+ (A) = mgz+ (A) whenever my (A) <
1. But we had a matrix A in Example 5.4 such that mg+(A) = 1 and
mz+(A) = 2. By proposition 2.2, we always have an m x n matrix X
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over Z*t with mg+(X) = 1 and mz+(X) = 2 whenever n > 2. Thus
F(Z*, Rt m,n) =1. O

Let A € M, o(R"). If mg(A) = 1, then each column of A is a
multiple of the first nonzero column of A. Moreover, each column of
A is a nonnegative multiple of that column, and hence there exist no
two linearly independent columns of A. Consequently mg+(A) = 1
and hence we have F(RT,R,m,n) > 1. We establish further result.

THEOREM 5.6. Let A € My, ,(R") with min(m,n) > 2. If mp(A)
=2, then mg+(A) = 2.

Proof. Suppose that mg(A) == 2. Then the number of maximal
linearly independent columns of A is 2 over R. That is, for any three
columns a;,a; and a; of A, we have za, + ya; + za, = 0 for some
r,y,z € R. Since a;,a; and a; Lave nonnegative entries, one of z,y
and z is positive while another is negative. Without loss of generality,
we may assume that x is positive and the others are negative. Then
a; = (~y/r)a; + (=z/z)ar. Since (—y/z) and (—z/x) are positive,
a;,a; and ag are linearly dependent over R*. Thus three arbitrary
columns of A are linearly dependent over R* and hence mg+ (A) < 2.
Using (5), the result follows. a

Now we see that there exists a matrix A € M,, ,(R*) such that
mR(A) < Mg+ (A) for mR(A) > 3.

EXAMPLE 5.7. Let

0 O
[ R
O ==
= OO

Then mg(A) = 3 since any three columns of A are linearly independent
over R but a; + a3 — as = a4, where ay, as, a3 and a4 are the columns
of A by turns. From Corollary 3.3, we have 4 = mpg, (A) < mg+ (A).
Hence mg(A) < mg+(A).

Using Proposition 2.2, we can obtain a matrix A € M,, ,(R*) such
that mg(A) < mg+(A) for min(m:, n) > 4.



224 Seok-Zun Song

LEMMA 5.8. Let S be a field. If A € M,, ,(S) and min(m,n) = k,
then ms(A) < k.

Proof. In a field, the maximal column rank and the field rank are
the same. So mg(A) < k. O

Using Theorem 5.6, Example 5.7 and Proposition 2.2, we have the
following comparison theorem.

THEOREM 5.9.

1 if min(m,n)=1
FRYR,mn) =< 2 if min(m,n) = 2

3 otherwise

Proof. If min(m,n) = 1, then it is trivial. Suppose that min(m, n) =
2. For any A € My, »(R*) with mg+ (A) < 1, it is clear that mg(A) =
mp+(A). And we have mg(A) < 2 by Lemma 5.8. Assume mg+(A) =
2. Then mg(A) < 2. But mg(A) can be neither 0 nor 1. Thus
mr(A) = 2. Then mg+(A) = mgr(A) by Theorem 5.6. So this case
holds.

Now, let min{(m,n) > 3. By Theorem 5.6, it suffices to show that for
any A € M, »(RT) with mg+(A) = 3, mg+(A) = mg(A). Assume
that mg+ (A) = 3. Then mg(A) < 3 by (5). But mg(A) cannot be 0, 1
and 2 by Theorem 5.6. Thus mg(A) = 3. Thus for any A € M,, ,(Rt)
with mg+(A) < 3, we have mg(A) = mg+ (A). Farther, Example 5.7
and Proposition 2.2 imply that there exists a masrix A € M, ,(R*)
such that mg+(A) > mg(A). Hence we have

F(RT,R,m,n) = 3. O

Next we show that equality need not hold in (7) and (8).
EXAMPLE 5.10. Let

1 2
a—1 a-2

A= [ ] € My »(Z,)

with @ > 3. Then mgz,(A) = 1 but mgz,,(A) = 2 for any b > 2 and
mz(A) = 2.
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