• Title/Summary/Keyword: Cold weather Concreting

Search Result 41, Processing Time 0.027 seconds

Construction and Quality Control Example of Cold Weather Concreting in Field (현장에서의 한중콘크리트의 시공 및 품질관리 사례)

  • Park, Jong-Gun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.171-175
    • /
    • 2001
  • The quality control application of concrete are one of the most important problems to be considered in cold weather concreting. And, the construction is going on now Therefor, the major test variables are compressive strength of concrete, curing method and volume of air content. This shown to be possible to construction and quality control of cold weather concreting in field.

  • PDF

The Properties of Temperature History of Concrete with Surface Insulating Material in Cold Weather Concreting (한중콘크리트 시공시 표면 단열재 변화에 따른 콘크리트의 온도이력 특성)

  • 문학용;신동안;김경민;김기철;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.7-11
    • /
    • 2003
  • This study investigate the hydration heat history with variation of surface insulating material in cold weather concreting. According to the results, the temperature of concrete lowers below zero in 24hours, so early frost damage occurs in the case of exposure and 1 fold bubble sheet, but the lowest temperature keeps above zero, so a adiabatic effect is very favorable in the case of double bubble sheet and 부직포. Compressive strength of core specimen at 7 and 28 days is highest In the case of double bubble sheet and 부직포. But, considering convenience of construction and economical efficiency, it is thought that the most effective surface insulating material is 1 fold bubble sheet +blanket.

  • PDF

A Field Study on the Mass Concreting in Cold Weather Environment (매스콘크리트의 한중시공에 관한 현장실험연구)

  • 한민철;김현우;김성수;최강순;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.287-292
    • /
    • 1999
  • Mass concreting in cold weather environment should be focused on the control of thermal crack caused by high hydration heat rather than curing method for protecting from frost damage at early age because the thermal stress have much influence on the quality of structure placed in cold weather. Therefore, in this paper, the control of thermal crack of mass concrete in cold weather environment are dealt with preparing the practice plan for mass concrete and placing the concrete according to the plactice plan. According to the results, we can obtain good quality mass concrete without thermal crack caused by the difference of temperature between inner part and outer part.

  • PDF

Concrete Strength Characteristic of the Insulating Gang Form for Mock-Up Members (Mock-up 부재에 적용한 단열 갱폼의 콘크리트 강도 특성)

  • Kim, Ji-Hun;Nam, Kyung-Yong;Lim, Nam-GI;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.67-68
    • /
    • 2013
  • In this paper, the compressive strength of an insulating gang form member, which was developed to improve the cold weather concreting quality, and a general gang form member was measured by age to examine the compressive strength characteristics of the two members compared with the standard curing test piece.

  • PDF

Field Application of Surface Insulation Curing Method to Cold Weather Concreting (한중콘크리트의 현장 표면단열 양생공법 시공사례 연구)

  • Kim Jong-Back;Lim Choon-Goun;Han Min-Cheol;Kim Seoung-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.25-28
    • /
    • 2005
  • This study investigates the field application of surface insulation curing method, which combined double layer bubble sheet(DBS) and thick-curing-material(TCM) for cold weather concreting. According to the test, deck slab, curing only upper section with DBS and TCM, does not make big different temperature history with that, curing both upper and bottom section during daily average temperature 6.5t. It is concluded that combination of DBS and TCM in only upper section can be safely cured in early period of time during cold water concreting. The field test was carried out with this favourable data. The upper deck slab was insulated by combination of DBS and TCM, and the construction was surrounded by tent. in order to protect from outside wind. The test result shows that the lowest temperature of deck slab indicated 6$ ^{circ}C $. It demonstrated that this curing method can resist early frost and save construction cost in the side of management and saving labor cost, compared with previous method. In addition, the column specimen, combined both form and bubble board, exhibited favorable temperature history, due to internal hydration heat insulation effect.

  • PDF

An Experimental Study on the Application in-situ of Curing Method by Planar Surface Heater for Cold Weather Concreting (전기발열시트 표면가열 양생공법의 현장적용 연구)

  • 김형래;조호규;김찬수;지남용
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.19-22
    • /
    • 2003
  • The purpose of this study is to analyze the curing effect of planar surface heater for concreting in cold weather. Some experiments were conducted to evaluate the temperature history of concrete structures cured with heating sheets. Results are as follows ; (1) The temperature of concrete showed continuously rising trend with the heating by planar surface heater under the cold environmental condition of 3~-12$^{\circ}C$. And after about 24 hours the maximum temperature of concrete was reached at 25~3$0^{\circ}C$. (2) The temperature of slab concrete heated by planar surface heater of 130W/$m^2$ was at least $25^{\circ}C$ higher than that of an exterior air, and the curing performance was much more effective than heating by hot wind machine. (3) Through the curing by planar surface heater for 48 hours, the concrete maturity of about 1.5 times to heating by hot wind machine was acquired.

  • PDF

Variation of the Period of Hot Weather Concrete with Elapse of Age in Korea (경년변화에 따른 우리나라 서중 콘크리트 적용기간의 변천)

  • Choi, Sung-Yong;Hong, Seak-Min;Lee, Chung-Sub;Jin, Cheng-Ri;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.53-56
    • /
    • 2008
  • This paper is to investigate the change of the period of hot weather concrete with elapse of age based on climate data. Climate data for 30 years and 5 years are used respectively. Determination of the period of hot weather concreting on architectural execution in Korea according to the specifications of AIJ, KSCE, and ACI are discussed. According to the research, the period of hot weather concreting with each specification in most regions lasts over 35 days. Compared with the period of cold weather concreting in hillside and inland area, coastal areas have shorter period in the same latitude. The period of hot weather concreting tends to decrease with high latitude. As expected, with the elapse of age, the period of hot weather concrete exhibited to decrease, especially, big city like Seoul, Busan etc had remarkably increased period by as much as a week. This is due to the global warming and industrialization effect with the elapse of age.

  • PDF

Determination of the Protecting Periods of Frost Damage at Early Age in Cold Weather Concreting (한중콘크리트의 초기 동해 방지를 위한 초기 양생기간의 산정)

  • 한천구;한민철
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.47-55
    • /
    • 2000
  • Protections from the frost damage at early ages are one of the serious problems to be considered in cold weather concreting. Frost damage at early ages brings about the harmful influences on the concrete structures such as surface cracks and declination of strength development. Therefore, in this paper, protecting periods of frost damage at early ages according to the standard specifications provided in KCI(Korean Concrete Institute) are suggested by appling logistic curve, which evaluates the strength development of concrete with maturity. W/B, kinds of cement and curing temperatures are selected as test parameters. According to the results, the estimation of strength development by logistic curve has a good agreement between calculated values and measured values. As W/B and compressive strength for protecting from frost damages at early ages increase, it is prolonged. It shows that the protecting periods of FAC(Fly Ash Cement) and BSC(Blast-furnace Slag Cement) concrete are longer than those of OPC(Ordinary Portland Cement) concrete. The protecting peridos from frost damage at early age by JASS are somewhat shorter than those by this paper.

Application of Cold Weather Concreting with Accelerator for Freeze Protection to Full Scale Structures (내한촉진제를 사용한 한중콘크리트의 실구조물 적용에 관한 연구)

  • Kim, Young-Jin;Baek, Tae-Ryong;Lee, Sang-Soo;Won, Chul;Kim, Dong-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.254-262
    • /
    • 2003
  • In this study, the results of applying cold weather concreting mixed with Accelerator for Freeze Protection(AFP) to full scale structures are presented. Since the determination of W/C and amount of AFP significantly have an effect on strength gain and protection of frost damage in early, a full investigation is needed to determine these values at stage of nux design. The flowability of fresh cold weather concreting with AFP was similar to the same W/C. Lower loss of workability and initial slump flow of concrete using superplasticizer of polycarboxylic ester than that of melamine sulphonate showed that polycarboxylic ester was more effective on elapsed time. Temperature histories of specimens located in insulation boxes at the site was similar to that of structures. Thus, it is cleared that simple adiabatic curing method is effective for evaluating in-place concrete strength than specimens cured by sealing method. The investigation results of development of compressive strength of cold weather concreting included AFP with curing methods by logistic curves indicated that AFP can be effective to gain strength at lower temperature than normal curing temperature. In field testing, vinyl sheets were placed over the concrete sections and AFP enabled concrete to gain $5N/{mm}^2$ to protect frost damage in early ages and specified compressive strength of concrete at 28 days under average temperature of $-2^{\circ}C$ (lowest temperature was $-12^{\circ}C$) during site application.