• 제목/요약/키워드: Close-to-convex

검색결과 76건 처리시간 0.022초

HIGHER ORDER CLOSE-TO-CONVEX FUNCTIONS ASSOCIATED WITH RUSCHEWEYH DERIVATIVE OPERATOR

  • NOOR, KHALIDA INAYAT;SHAH, SHUJAAT ALI
    • Journal of applied mathematics & informatics
    • /
    • 제39권1_2호
    • /
    • pp.133-143
    • /
    • 2021
  • The purpose of this paper is to introduce and study certain subclasses of analytic functions by using Ruscheweyh derivative operator. We discuss various of interesting properties such as, necessary condition, arc length problem and growth rate of coefficient of newly defined class. Also rate of growth of Hankel determinant will be estimated.

Applications of Convolution Operators to some Classes of Close-to-convex Functions

  • Noor, Khalida Inayat
    • 호남수학학술지
    • /
    • 제10권1호
    • /
    • pp.23-30
    • /
    • 1988
  • Let C[C, D] and $S^{*}[C,\;D]$ denote the classes of functions g, g(0)=1-g'(0)0=0, analytic in the unit disc E such that $\frac{(zg{\prime}(z)){\prime}}{g{\prime}(z)}$ and $\frac{zg{\prime}(z)}{g(z)}$ are subordinate to $\frac{1+Cz}{1+Dz{\prime}}$ $z{\in}E$, respectively. In this paper, the classes K[A,B;C,D] and $C^{*}[A,B;C,D]$, $-1{\leq}B<A{\leq}1$; $-1{\leq}D<C{\leq}1$, are defined. The functions in these classes are close-to-convex. Using the properties of convolution operators, we deal with some problems for our classes.

  • PDF

ON UNIVALENT SUBORDINATE FUNCTIONS

  • Park, Suk-Joo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제3권2호
    • /
    • pp.103-111
    • /
    • 1996
  • Let $f(z)=z+\alpha_2 z^2$+…+ \alpha_{n}z^n$+… be regular and univalent in $\Delta$ = {z : │z│<1}. In this paper, using the proper subordinate functions, we investigate the some relations between subordinations and conditions of functions belonging to subclasses of univalent functions.

  • PDF

CONSTRUCTION OF SUBCLASSES OF UNIVALENT HARMONIC MAPPINGS

  • Nagpal, Sumit;Ravichandran, V.
    • 대한수학회지
    • /
    • 제51권3호
    • /
    • pp.567-592
    • /
    • 2014
  • Complex-valued harmonic functions that are univalent and sense-preserving in the open unit disk are widely studied. A new methodology is employed to construct subclasses of univalent harmonic mappings from a given subfamily of univalent analytic functions. The notions of harmonic Alexander operator and harmonic Libera operator are introduced and their properties are investigated.

CLASS-MAPPING PROPERTIES OF THE HOHLOV OPERATOR

  • Mishra, Akshaya K.;Panigrahi, Trailokya
    • 대한수학회보
    • /
    • 제48권1호
    • /
    • pp.51-65
    • /
    • 2011
  • In the present paper sufficient conditions, in terms of hyper-geometric inequalities, are found so that the Hohlov operator preserves a certain subclass of close-to-convex functions (denoted by $R^{\tau}$ (A, B)) and transforms the classes consisting of k-uniformly convex functions, k-starlike functions and univalent starlike functions into $\cal{R}^{\tau}$ (A, B).

Certain Subclasses of k-uniformly Functions Involving the Generalized Fractional Differintegral Operator

  • Seoudy, Tamer Mohamed
    • Kyungpook Mathematical Journal
    • /
    • 제58권2호
    • /
    • pp.243-255
    • /
    • 2018
  • We introduce several k-uniformly subclasses of p-valent functions defined by the generalized fractional differintegral operator and investigate various inclusion relationships for these subclasses. Some interesting applications involving certain classes of integral operators are also considered.