DOI QR코드

DOI QR Code

CLASS-MAPPING PROPERTIES OF THE HOHLOV OPERATOR

  • Mishra, Akshaya K. (DEPARTMENT OF MATHEMATICS BERHAMPUR UNIVERSITY) ;
  • Panigrahi, Trailokya (DEPARTMENT OF MATHEMATICS TEMPLECITY INSTITUTE OF TECHNOLOGY AND ENGINEERING F/12, IID CENTRE KNOWLEDGE CAMPUS)
  • Received : 2009.05.10
  • Published : 2011.01.31

Abstract

In the present paper sufficient conditions, in terms of hyper-geometric inequalities, are found so that the Hohlov operator preserves a certain subclass of close-to-convex functions (denoted by $R^{\tau}$ (A, B)) and transforms the classes consisting of k-uniformly convex functions, k-starlike functions and univalent starlike functions into $\cal{R}^{\tau}$ (A, B).

Keywords

References

  1. L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2,137-152. https://doi.org/10.1007/BF02392821
  2. T. R. Caplinger and W. M. Causey, A class of univalent functions, Proc. Amer. Math.Soc. 39 (1973), 357-361. https://doi.org/10.1090/S0002-9939-1973-0320294-4
  3. K. K. Dixit and S. K. Pal, On a class of univalent functions related to complex order,Indian J. Pure Appl. Math. 26 (1995), no. 9, 889-896.
  4. P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften[Fundamental Principles of Mathematical Sciences], 259. Springer-Verlag, New York,1983.
  5. A. Gangadharan, T. N. Shanmugam, and H. M. Srivastava, Generalized hypergeometricfunctions associated with k-uniformly convex functions, Comput. Math. Appl. 44 (2002), no. 12, 1515-1526. https://doi.org/10.1016/S0898-1221(02)00275-4
  6. A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc.8 (1957), 598-601. https://doi.org/10.1090/S0002-9939-1957-0086879-9
  7. A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87-92.
  8. Ju. E. Hohlov, Operators and operations on the class of univalent functions, Izv. Vyssh.Uchebn. Zaved. Mat. 1978 (1978), no. 10, 83-89.
  9. S. Kanas and H. M. Srivastava, Linear operators associated with k-uniformly convexfunctions, Integral Transform. Spec. Funct. 9 (2000), no. 2, 121-132. https://doi.org/10.1080/10652460008819249
  10. S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl.Math. 105 (1999), no. 1-2, 327-336. https://doi.org/10.1016/S0377-0427(99)00018-7
  11. S. Kanas and A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45(2000), no. 4, 647-657.
  12. W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57 (1992), no.2, 165-175.
  13. K. S. Padmanabhan, On a certain class of functions whose derivatives have a positivereal part in the unit disc, Ann. Polon. Math. 23 (1970), 73-81.
  14. S. Ponnusamy and F. Ronning, Starlikeness properties for convolutions involving hypergeometric series, Ann. Univ. Mariae Curie-Sklodowska Sect. A 52 (1998), no. 1,141-155.
  15. F. Ronning, Uniformly convex functions and a corresponding class of starlike functions,Proc. Amer. Math. Soc. 118 (1993), no. 1, 189-196. https://doi.org/10.1090/S0002-9939-1993-1128729-7
  16. H. M. Srivastava and P. W. Karlson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1985.
  17. H. M. Srivastava and A. K. Mishra, Applications of fractional calculus to parabolicstarlike and uniformly convex functions, Comput. Math. Appl. 39 (2000), no. 3-4, 57-69. https://doi.org/10.1016/S0898-1221(99)00333-8
  18. H. M. Srivastava and A. K. Mishra, A fractional differintegral operator and its applications to a nested class of multivalent functions with negative coefficients, Adv. Stud. Contemp. Math. (Kyungshang)7 (2003), no. 2, 203-214.
  19. H. M. Srivastava, A. K. Mishra, and M. K. Das, A nested class of analytic functionsdefined by fractional calculus, Commun. Appl. Anal. 2 (1998), no. 3, 321-332.
  20. H. M. Srivastava, A. K. Mishra, and M. K. Das, A unified operator in fractional calculus and its applications to a nested classof analytic functions with negative coefficients, Complex Variables Theory Appl. 40(1999), no. 2, 119-132. https://doi.org/10.1080/17476939908815211
  21. H. M. Srivastava, A. K. Mishra, and M. K. Das, A class of parabolic starlike functions defined by means of a certain fractionalderivative operator, Fract. Calc. Appl. Anal. 6 (2003), no. 3, 281-298.

Cited by

  1. Applications of Cauchy-Schwarz inequalities in the mapping structure of linear operator vol.11, pp.4, 2018, https://doi.org/10.5897/AJMCSR2016.0672