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HIGHER ORDER CLOSE-TO-CONVEX FUNCTIONS
ASSOCIATED WITH RUSCHEWEYH DERIVATIVE

OPERATOR
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Abstract. The purpose of this paper is to introduce and study certain
subclasses of analytic functions by using Ruscheweyh derivative operator.
We discuss various of interesting properties such as, necessary condition,
arc length problem and growth rate of coefficient of newly defined class.
Also rate of growth of Hankel determinant will be estimated.
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1. Introduction

Let A be the class of analytic functions of the form

f(z) = z +

∞∑
n=2

anz
n, (1)

in the open unit disk E = {z : |z| < 1}. Also, let S, S∗, C and K denote the
subclasses of A consisting of functions that are univalent, starlike, convex and
close-to-convex in E respectively.

The convolution or Hadamard product of two functions f, g ∈ A is denoted
by f ∗ g and is defined as

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n, z ∈ E. (2)

A function f ∈ A is subordinate to g ∈ A, written f ≺ g or f(z) ≺ g(z), if
there exists a Schwartz function w in E such that f(z) = g(w(z)).
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In [5], Janowski introduced the class P [A,B]. For −1 ≤ B < A ≤ 1, a
function p analytic in E with p(0) = 1 belongs to the class P [A,B], if p(z) is
subordinate to 1+Az

1+Bz .
Noor [11] extended the concept of Janowski functions in bounded rotation

and defined certain subclasses of analytic functions as follows:
Let p ∈ A with p(0) = 1. Then, for m ≥ 2, p ∈ Pm[A,B] if and only if

p(z) =

(
m

4
+

1

2

)
p1(z)−

(
m

4
− 1

2

)
p2(z), for p1, p2 ∈ P [A,B].

Rm[A,B] =

{
f ∈ A :

zf ′

f
∈ Pm[A,B]

}
and

Vm[A,B] = {f ∈ A : zf ′ ∈ Rm[A,B]} .
For k > 0, the conic domains Ωk, defined as;

Ωk =

{
u+ iv : u > k

√
(u− 1)

2
+ v2

}
.

The domains Ωk (k = 0) represents right half plane, Ωk (0 < k < 1) represents
hyperbola, Ωk (k = 1) represents a parabola and Ωk (k > 1) represents an ellipse.
The extremal functions for these conic regions are given as

pk(z) =



1+z
1−z , k = 0

1 + 2
π2

(
log 1+

√
z

1−
√
z

)2
, k = 1

1 + 2
1−k2

[(
2
π arccos k

)
arctanh

√
z
]
, 0 < k < 1

1 + 1
k2−1 sin

(
π

2R(t)

∫ u(z)√
t

0

1√
1−x2

√
1−(tx)2

dx

)
+ 1

k2−1 , k > 1,

(3)

where u(z) = z−
√
t

z−
√
tz
, t ∈ (0, 1) , z ∈ E and z is chosen such that k = cosh

(
πR′(t)
4R(t)

)
,

R(t) is Legendre’s complete elliptic integral of the first kind and R′(t) is com-
plementary integral of R(t). See [6, 7] for more information.

Let P (pk) denote the class of all those functions p(z) which are analytic in E
with p(0) = 1 and satisfies p(z) ≺ pk(z), z ∈ E.

Clearly P (pk) ⊂ P ( k
1+k ) ⊂ P , where P is the well known class of Caratheodory

functions.
Let f ∈ A and Dδ : A → A be the operator defined by

Dδf(z) =

{ z
(1−z)δ+1 ∗ f(z); δ > −1

z(zδ−1f(z))
δ

δ! δ ∈ N0 = {0, 1, 2, ...}
.

Note that D0f(z) = f(z) and D1f(z) = zf ′(z). We can easily verify the follow-
ing identity, see [19].

z(Dδf)′ = (δ + 1)Dδ+1f − δDδf. (4)
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Using Ruscheweyh derivative operator, we define:
Rδ

m[A,B] =
{
f ∈ A : Dδf ∈ Rm [A,B]

}
,

V δ
m[A,B] =

{
f ∈ A : zf ′ ∈ Rδ

m[A,B]
}

and

k − UT δ
m[A,B] =

{
f ∈ A :

(
Dδf

)′
(Dδg)

′ ∈ P (pk), for g ∈ V δ
m[A,B]

}
.

We note that for special values of k, δ, m, A and B we obtain several known
classes of analytic functions, see [3, 5, 10, 11].

2. Main Results

2.1. Necessary Condition.

Theorem 2.1. Let f ∈ k − UT δ
m[A,B] and F (z) = Dδf(z). Then, for θ1 < θ2,

z = reιθ ∫ θ2

θ1

Re

{
(zF ′(z))

′

F ′(z)

}
dθ > −

[
(A−B) (m− 2)

2 (1−B)
+ σ

]
π,

where σ = 2
π arctan( 1k ).

Proof. Let f ∈ k − UT δ
m[A,B]. Then there exists g ∈ V δ

m[A,B] such that
F ′(z)

G′(z)
∈ P (pk(z)) , where G = Dδg

Equivalently
F ′(z) = G′(z)p(z), where p(z) ∈ P (pk(z)) . (5)

F ′(z) = G′(z)hσ(z), (6)
where h ∈ P and σ = 2

π arctan( 1k ).
Since g ∈ V δ

m[A,B], so(
Dδg

)
(z) = G(z) ∈ Vm[A,B] ⊂ Vm(ρ),

where ρ = 1−A
1−B , we have

G′(z) = (G′
1(z))

1−ρ
, G1 ∈ Vm, (see [16]) . (7)

From (6) and (7), we get

F ′(z) = (G′
1(z))

1−ρ
hσ(z)

zF ′(z) = (zG′
1(z))

1−ρ
zρhσ(z). (8)

Logarithmic differentiation of (8) yields
(zF ′)

′
(z)

zF ′(z)
= (1− ρ)

(zG′
1(z))

′

zG′
1(z)

+
ρ

z
+ σ

h′(z)

h(z)

(zF ′)
′
(z)

F ′(z)
= (1− ρ)

(zG′
1(z))

′

G′
1(z)

+ ρ+ σ
zh′(z)

h(z)
.
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Integrating from θ1 to θ2, where θ1 < θ2, for z = reiθ we have∫ θ2

θ1

Re

{
(zF ′)

′
(z)

F ′(z)

}
dθ = (1− ρ)

∫ θ2

θ1

Re

{
(zG′

1(z))
′

G′
1(z)

}
dθ + ρ (θ2 − θ1)

+ σ

∫ θ2

θ1

Re

{
zh′(z)

h(z)

}
dθ. (9)

We observe that, for h ∈ P

∂

∂θ
arg h(reiθ) =

∂

∂θ
Re
{
−i lnh(reiθ)

}
= Re

{
reiθh′(reiθ)

h(reiθ)

}
.

This implies∫ θ2

θ1

Re

{
reiθh′(reiθ)

h(reiθ)

}
dθ = arg h(reiθ2)− arg h(reiθ1),

and ∫ θ2

θ1

Re

{
(zG′

1(z))
′

G′
1(z)

}
dθ > −

(m
2

− 1
)
π. (10)

From (8− 10), we get for θ1 < θ2, z = reiθ∫ θ2

θ1

Re

{
(zF ′)

′
(z)

F ′(z)

}
dθ > − (1− ρ)

(m
2

− 1
)
π − σπ − 2σ cos−1

(
2r

1 + r2

)
> −

[
(A−B) (m− 2)

2 (1−B)
+ σ

]
π, (r → 1).

�

Remark 2.1. For f ∈ k − UT δ
m[A,B], it follows that Dδf is univalent for

2 ≤ m ≤ 4− 2σ
1−ρ , where ρ = 1−A

1−B , σ = 2
π arctan( 1k ) and we restrict σ ̸= 1− ρ.

Remark 2.2. Due to [3], Goodman introduced the class K(ς) of analytic func-
tions which are close-to-convex of order ς ≥ 0. Let f be analytic and f ′(z) ̸= 0.
Then for θ1 < θ2, z = reiθ∫ θ2

θ1

Re

{
(zf ′(z))

′

f ′(z)

}
dθ > −ςπ.

If ς = 1, then f ∈ K(1) = K is close-to-convex and hence univalent. We note,
from Theorem 2.1, that

Dδf ∈ K(ς), where ς =
[
(A−B) (m− 2)

2 (1−B)
+ σ

]
. (11)

When δ = k = 0, A = 1 and B = −1 we get well known reusult proved by
Noor [10].
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Corollary 2.2. Let f ∈ Tm. Then for z = reiθ and θ1 < θ2∫ θ2

θ1

Re

{
(zf ′(z))

′

f ′(z)

}
dθ > −m

2
π.

2.2. Arc Length Problem.

Theorem 2.3. Let f ∈ k−UT δ
m[A,B] and F (z) = Dδf = z+

∞∑
n=2

Anz
n. Then,

for m >
{

(2−σ)
1−ρ − 2

}
, δ ∈ N0 and n ≥ 2 the arc length Lr(F ) of image of the

circle |z| = r under F is given by
Lr(F ) ≤ c(m, ρ, k)nα−1,

where c(m, ρ, k) is constant depending on m, ρ and k and α = (1− ρ)
(
m+2
2

)
+σ.

Proof. Let f ∈ k − UT δ
m[A,B]. Then there exists g ∈ V δ

m[A,B] such that
F ′(z)

G′(z)
∈ P (pk(z)) , where F (z) = Dδf(z) and G(z) = Dδg(z).

Equivalently
F ′(z) = G′(z)p(z), (12)

where p(z) ∈ P (pk(z)) .
F ′(z) = G′(z)hσ(z), (13)

where h ∈ P and σ = 2
π arctan( 1k ). Now for z = reiθ, we have

Lr(F ) =

∫ 2π

0

|zF ′(z)| dθ

=

∫ 2π

0

|zG′(z)hσ(z)| dθ. (14)

Since g ∈ V δ
m[A,B] , so

G(z) = Dδg(z) ∈ Vm[A,B] ⊂ Vm(ρ),

where ρ = 1−A
1−B , we have

G′(z) = (G′
1(z))

1−ρ
, G1 ∈ Vm, (see [16]) . (15)

For G1 ∈ Vm, due to Brannan [1]

G′
1(z) =

(
s1(z)
z

)m+2
4

(
s2(z)
z

)m−2
4

, s1, s2 ∈ S∗. (16)

From (14− 16), we have

Lr(F ) =

∫ 2π

0

∣∣∣∣∣∣∣∣z

(

s1(z)
z

)m+2
4

(
s2(z)
z

)m−2
4

hσ(z)
∣∣∣∣∣∣∣∣ dθ, s1, s2 ∈ S∗.
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≤ rρ
(
4

r

)(1−ρ)(m+2
4 ) ∫ 2π

0

|s1(z)|(1−ρ)(m+2
4 ) |h(z)|σ dθ. (17)

We have used distortion result for starlike function s2(z). Now by Holder’s
inequality together with subordination of starlike functions (17) implies

Lr(F ) ≤ 2πrρ
(
4

r

)(1−ρ)(m+2
4 )

 1

2π

∫ 2π

0

{(
r

|1− reiθ|

)(1−ρ)(m+2
2 )
} 2

2−σ

dθ


2−σ
2

×
[
1

2π

∫ 2π

0

|h(z)|2 dθ
]σ

2

. (18)

Since h(z) ∈ P, so we have
1

2π

∫ 2π

0

|h(z)|2 dθ ≤ 1 + 3r2

1− r2
. (see [17]) . (19)

From (18) and (19), we obtain for m >
{

(2−σ)
1−ρ − 2

}
Lr(F ) ≤ c(m, ρ, k)

(
1

1− r

)α−1

,

where c(m, ρ, k) is constant depending onm, ρ and k and α = (1− ρ)
(
m+2
2

)
+σ.

Taking r = 1− 1
n , then we have

Lr(F ) ≤ c(m, ρ, k)nα−1, (n→ ∞) .
�

2.3. Growth Rate of Coefficient.

Theorem 2.4. Let f ∈ k − UT δ
m[A,B] and F (z) = Dδf (z). Then, for m >{

2−σ
1−ρ − 2

}
and δ ∈ N0

|an| = O(1)nα−(2+δ), (20)
where O(1) is constant depending on m, ρ and k and α = (1− ρ)

(
m+2
2

)
+ σ.

Proof. Making use of Cauchy’s theorem, for z = reιθ

n |An| =
1

2πrn

∣∣∣∣∫ 2π

0

zF ′(z)e−ιnθdθ

∣∣∣∣
≤ 1

2πrn

∫ 2π

0

|zF ′(z)| dθ

=
1

2πrn
Lr(F ).

From Theorem 2.3, we obtain
|An| ≤ c1(m, ρ, k)n

α−2, (n→ ∞) ,
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where c1(m, ρ, k) is constant depending on m, ρ and k and

α = (1− ρ)

(
m+ 2

2

)
+ σ.

Since An =
[
(n+δ−1)!
δ!(n−1)!

]
an, so we can easily write

|an| = O(1)nα−(2+δ), (n→ ∞) ,

where O(1) is constant depending on m, ρ, δ and k with

α = (1− ρ)

(
m+ 2

2

)
+ σ.

�
2.4. The Hankel Determinant. Let f ∈ A and be given by (1). Then the
qth Hankel determinant of f(z) is given for q ≥ 1, n ≥ 1 by

Hq(n) =

∣∣∣∣∣∣∣∣∣∣
an an+1 ... an+q−1

an+1 . . .
.
.

.

.
.
.

.

.
an+q−1 .. .. an+2q−2

∣∣∣∣∣∣∣∣∣∣
(21)

The problem of determining the rate of growth of Hq(n) as n → ∞ for
functions belonging to certain subclasses of analytic functions is well-known, see
[4, 8, 10, 12, 13, 14, 15, 18].

Noonan and Thomas [8] have shown that, for a really mean p-valent functions,

Hq(n) = O(1)

{
n2p−1; q = 1, p > 1

4

n2pq−q2 ; q ≥ 2, p ≥ 2(q − 1),
whereO(1) depends upon p, q and f and the exponent

(
2pq − q2

)
is best possible.

For p = 1, Hayman [4] has shown that H2(n) = O(1).n
1
2 as n → ∞ and this is

best possible. In [9], it was shown that if f ∈ Vm, then

Hq(n) = O(1)

{
n

m
2 −1; q = 1,

n
mq
2 −q2 ; q ≥ 2, m ≥ 8q − 10.

The exponent
(
mq
2 − q2

)
is best possible in some sense. Here we estimate the

rate of growth of f ∈ Tm(φ, 1+Az
1+Bz , pk(z)), we need following known Lemmas,

due to Noonan and Thomas [8].

Lemma 2.5. Let f ∈ A and be given by (1). Let qth Hankel determinant of f
for q ≥ 1, n ≥ 1, be defined by (21). Then writing ∆j(n) = ∆j(n, z1, f), we have

Hq(n) =

∣∣∣∣∣∣∣∣∣∣
∆2q−2(n) ∆2q−3(n+ 1) ... ∆q−1(n+ q − 1)

∆2q−3(n+ 1) ∆2q−4(n+ 2) ... ∆q−2(n+ q)
.
.

.

.
.
.

.

.
∆q−1(n+ q − 1) .. .. ∆0(n+ 2q − 2)

∣∣∣∣∣∣∣∣∣∣
,
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where, with ∆0(n, z1, f) = an, we define for j ≥ 1,
∆j(n, z1, f) = ∆j−1(n, z1, f)− z1∆j−1(n+ 1, z1, f)

Lemma 2.6. With x =
(

n
n+1y

)
and v ≥ 0 be any integer

∆j(n+ v, x, zf ′) =

j∑
i=0

(
j
i

)
yi(v − (i− 1)n)

(n+ 1)i
∆j−i(n+ v + i, y, f)

Theorem 2.7. Let f ∈ k − UT δ
m[A,B] and let the qth Hankel determinant of

f(z) for q ≥ 1, n ≥ 1, be defined by (21). Then, for m ≥ 4(q−1)
1−ρ − 2

Hq(n) = O(1).n{(1−ρ)(m
2 +1)+σ−1}q−q2 ,

where O(1) is constant depending upon m, ρ and j and ρ = 1−A
1−B .

Proof. Let f ∈ k − UT δ
m[A,B]. Then we can write

F ′(z)

G′(z)
∈ P (pk(z)) , where F (z) = Dδf(z) and G(z) = Dδg(z).

Equivalently
F ′(z) = G′(z)p(z), where p(z) ∈ P (pk(z)) .

F ′(z) = G′(z)hσ(z), (22)
where h ∈ P and σ = 2

π arctan( 1k ). Since g ∈ V δ
m[A,B], so

G = Dδg ∈ Vm[A,B] ⊂ Vm(ρ),

where ρ = 1−A
1−B , we have

G′(z) = (G′
1(z))

1−ρ
, G1 ∈ Vm, (see [16]) . (23)

For G1 ∈ Vm, due to Brannan [1]

G′
1(z) =

(
s1(z)
z

)m+2
4

(
s2(z)
z

)m−2
4

, s1, s2 ∈ S∗. (24)

From (22− 24), we get

F ′(z) =


(

s1(z)
z

)m+2
4

(
s2(z)
z

)m−2
4


(1−ρ)

.hσ(z), s1, s2 ∈ S∗. (25)

We can choose a z1 = z1(r) with |z| = r such that for any univalent function
s(z)

max
|z|=r

|(z − z1)s(z)| ≤
2r2

1− r2
; (see [2]). (26)
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Now for j ≥ 1, z1 be any non-zero complex number, consider

|∆j(n, z1, zF
′)| = 1

2πrn+j

∣∣∣∣∫ 2π

0

(z − z1)
j
zF ′(z)e−i(n+j)θdθ

∣∣∣∣ . (27)

Putting (25) in (27), we get

|∆j(n, z1, zF
′)| ≤ 1

2πrn+j

∫ 2π

0

∣∣∣∣∣∣∣∣(z − z1)
j
z
(

s1(z)
z

)(1−ρ)(m+2
4 )

(
s2(z)
z

)(1−ρ)(m−2
4 )

.hσ(z)dθ

∣∣∣∣∣∣∣∣ . (28)

From (26) and (28), we have for m ≥ 4j
1−ρ − 2

|∆j(n, z1, zF
′)| ≤ 1

2πrn+j+ρ−1

(
2r2

1− r2

)j ∫ 2π

0

|s1(z)|(1−ρ)(m+2
4 )−j

|s2(z)|(1−ρ)(m−2
4 )

|hσ(z)| dθ.

(29)
Using Holder’s inequality along with employing distortion result for starlike func-
tion s1(z) and subordination for starlike function s2(z), on simplification, we
obtain from (29)

|∆j(n, z1, zF
′)| ≤ c(m, ρ, j)

(
1

1− r

)j [
1

2π

∫ 2π

0

|s1(z)|{(1−ρ)(m+2
2 )−2j} 2

2−σ dθ

] 2−σ
2

×
[
1

2π

∫ 2π

0

|h(z)|2 dθ
]σ

2

.

|∆j(n, z1, zF
′)| ≤ c(m, ρ, j)

(
1

1− r

)σ
2 +j

 1

2π

∫ 2π

0

1

|1− reiθ|
(1−ρ)(m+2

2 )−4j

2−σ


2−σ
2

≤ c(m, ρ, j)

(
1

1− r

)(1−ρ)(m+2
4 )+σ−j−1

,

where c(m, ρ, j) is constant depending upon m, ρ and j. Choosing r = 1 − 1
n ,

we have for m ≥ 4j
1−ρ − 2

|∆j(n, z1, zF
′)| = O(1).n(1−ρ)(m+2

2 )+σ−j−1,
where O(1) is constant depending upon m, ρ and j. Now applying Lemma 2.6
and putting z1 =

(
n

n+1e
ιθn
)
(n→ ∞), we have for m ≥ 4j

1−ρ − 2∣∣∆j(n, e
ιθn , F )

∣∣ = O(1).n(1−ρ)(m+2
4 )+σ−j−2.

We use Lemma 2.5 and follow the similar arguments given in [8], we get for
m ≥ 4(q−1)

1−ρ − 2

Hq(n) = O(1).n{(1−ρ)(m+2
4 )+σ−1}q−q2 .
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�

3. Conclusion

The main aim of this paper is to define a new subclass of analytic functions
by applying Ruscheweyh derivative operator. These classes are generalization
of many of the well-known classes. We have discussed necessary condition, arc
length problem, growth rate of coefficient and the Hankel determinant problem
for the newly defined class. In these investigations concepts of Janowski functions
and conic domains were used.
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