• Title/Summary/Keyword: Clifford Analysis

Search Result 40, Processing Time 0.02 seconds

STEPANOV ALMOST PERIODIC SOLUTIONS OF CLIFFORD-VALUED NEURAL NETWORKS

  • Lee, Hyun Mork
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.39-52
    • /
    • 2022
  • We introduce Clifford-valued neural networks with leakage delays. Furthermore, we study the uniqueness and existence of Clifford-valued Hopfield artificial neural networks having the Stepanov weighted pseudo almost periodic forcing terms on leakage delay terms. However the noncommutativity of the Clifford numbers' multiplication made our investigation diffcult, so our results are obtained by decomposing Clifford-valued neural networks into real-valued neural networks. Our analysis is based on the differential inequality techniques and the Banach contraction mapping principle.

RELATIONS OF L-REGULAR FUNCTIONS ON QUATERNIONS IN CLIFFORD ANALYSIS

  • KANG, HAN UL;SHON, KWANG HO
    • East Asian mathematical journal
    • /
    • v.31 no.5
    • /
    • pp.667-675
    • /
    • 2015
  • In this paper, we provide some properties of several left regular functions in Clifford analysis. We find the corresponding Cauchy-Riemann system and conjugate harmonic functions of the harmonic functions, for each left regular function in the sense of several complex variables. And we investigate certain properties of generalized quaternions in Clifford analysis.

PROPERTIES OF HYPERHOLOMORPHIC FUNCTIONS IN CLIFFORD ANALYSIS

  • Lim, Su Jin;Shon, Kwang Ho
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.553-559
    • /
    • 2012
  • The noncommutative extension of the complex numbers for the four dimensional real space is a quaternion. R. Fueter, C. A. Deavours and A. Subdery have developed a theory of quaternion analysis. M. Naser and K. N$\hat{o}$no have given several results for integral formulas of hyperholomorphic functions in Clifford analysis. We research the properties of hyperholomorphic functions on $\mathbb{C}^2{\times}\mathbb{C}^2$.

SZEGÖ PROJECTIONS FOR HARDY SPACES IN QUATERNIONIC CLIFFORD ANALYSIS

  • He, Fuli;Huang, Song;Ku, Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1215-1235
    • /
    • 2022
  • In this paper we study Szegö kernel projections for Hardy spaces in quaternionic Clifford analysis. At first we introduce the matrix Szegö projection operator for the Hardy space of quaternionic Hermitean monogenic functions by the characterization of the matrix Hilbert transform in the quaternionic Clifford analysis. Then we establish the Kerzman-Stein formula which closely connects the matrix Szegö projection operator with the Hardy projection operator onto the Hardy space, and we get the matrix Szegö projection operator in terms of the Hardy projection operator and its adjoint. At last, we construct the explicit matrix Szegö kernel function for the Hardy space on the sphere as an example, and get the solution to a Diriclet boundary value problem for matrix functions.

COSET OF A HYPERCOMPLEX NUMBER SYSTEM IN CLIFFORD ANALYSIS

  • KIM, JI EUN;SHON, KWANG HO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1721-1728
    • /
    • 2015
  • We give certain properties of elements in a coset group with hypercomplex numbers and research a monogenic function and a Clifford regular function with values in a coset group by defining differential operators. We give properties of those functions and a power of elements in a coset group with hypercomplex numbers.

PROPERTIES OF HYPERHOLOMORPHIC FUNCTIONS ON DUAL TERNARY NUMBERS

  • Jung, Hyun Sook;Shon, Kwang Ho
    • The Pure and Applied Mathematics
    • /
    • v.20 no.2
    • /
    • pp.129-136
    • /
    • 2013
  • We research properties of ternary numbers with values in ${\Lambda}(2)$. Also, we represent dual ternary numbers in the sense of Clifford algebras of real six dimensional spaces. We give generation theorems in dual ternary number systems in view of Clifford analysis, and obtain Cauchy theorems with respect to dual ternary numbers.