DOI QR코드

DOI QR Code

PROPERTIES OF HYPERHOLOMORPHIC FUNCTIONS IN CLIFFORD ANALYSIS

  • Lim, Su Jin (Department of Mathematics, Pusan National University) ;
  • Shon, Kwang Ho (Department of Mathematics, Pusan National University)
  • Received : 2012.03.15
  • Accepted : 2012.08.22
  • Published : 2012.11.30

Abstract

The noncommutative extension of the complex numbers for the four dimensional real space is a quaternion. R. Fueter, C. A. Deavours and A. Subdery have developed a theory of quaternion analysis. M. Naser and K. N$\hat{o}$no have given several results for integral formulas of hyperholomorphic functions in Clifford analysis. We research the properties of hyperholomorphic functions on $\mathbb{C}^2{\times}\mathbb{C}^2$.

Keywords

References

  1. F. Brackx, On (k)-monogenic functions of a quaternion variable, Res. Notes in Math. 8 (1976), 22-44.
  2. F. Brackx, R. Delanghe and F. Sommen, Clifford analysis, Res. Notes in Math. 76 (1982), 1-43.
  3. C. A . Deavours, The quaternion calculus, Amer. Math. Monthly 80 (1973), 995-1008. https://doi.org/10.2307/2318774
  4. F. Gursey, and H. C. Tze, Complex and Quaternionic Analyticity in Chiral and Gauge Theories I, Ann. of Physics 128 (1980), 29-130. https://doi.org/10.1016/0003-4916(80)90056-1
  5. J. Kajiwara, X. D. Li and K. H. Shon, Regeneration in Complex, Quaternion and Clifford analysis, Proc. the 9th(2001) Internatioal Conf. on Finite or Infinite Dimensional Complex Analysis and Applications, Advances in Complex Analysis and Its Applications Vol. 2, Kluwer Academic Publishers (2004), 287-298.
  6. M. Naser, Hyperholomorphic functions, Silberian Math. J. 12 (1971), 959-968.
  7. K. Nono, Hyperholomorphic functions of a quaternion variable, Bull. Fukuoka Univ. Ed. 32 (1983), 21-37.
  8. K. Nono, Characterization of domains of holomorphy by the existence of hyper-conjugate harmonic functions, Rev. Roumaine Math. Pures Appl. 31 (1986), no. 2, 159-161.
  9. K. Nono, Domains of Hyperholomorphic in ${\mathbb{C}^2}{\times}{\mathbb{C}^2}$, Bull. Fukuoka Univ. Ed. 36 (1987), 1-{9.
  10. B. V. Shabat, Introduction to Complex Analysis [in Russian], Nauka, Moscow (1969).
  11. A. Sudbery, Quaternionic analysis, Math. Proc. Camb. Phil. Soc. 85 (1979), 199-225. https://doi.org/10.1017/S0305004100055638

Cited by

  1. Dual Quaternion Functions and Its Applications vol.2013, pp.1687-0042, 2013, https://doi.org/10.1155/2013/583813
  2. PROPERTIES OF HYPERHOLOMORPHIC FUNCTIONS ON DUAL TERNARY NUMBERS vol.20, pp.2, 2012, https://doi.org/10.7468/jksmeb.2013.20.2.129
  3. FUNCTIONS AND DIFFERENTIAL OPERATORS IN THE DUAL REDUCED QUATERNION FIELD vol.29, pp.3, 2012, https://doi.org/10.7858/eamj.2013.020
  4. CHARACTERIZATION OF A REGULAR FUNCTION WITH VALUES IN DUAL QUATERNIONS vol.22, pp.1, 2015, https://doi.org/10.7468/jksmeb.2015.22.1.65
  5. REGULAR FUNCTIONS FOR DIFFERENT KINDS OF CONJUGATIONS IN THE BICOMPLEX NUMBER FIELD vol.32, pp.5, 2016, https://doi.org/10.7858/eamj.2016.044