• 제목/요약/키워드: Class Derivation

검색결과 46건 처리시간 0.031초

An Asymmetric Fuglede-Putnam's Theorem and Orthogonality

  • Ahmed, Bachir;Segres, Abdelkder
    • Kyungpook Mathematical Journal
    • /
    • 제46권4호
    • /
    • pp.497-502
    • /
    • 2006
  • An asymmetric Fuglede-Putnam theorem for $p$-hyponormal operators and class ($\mathcal{Y}$) is proved, as a consequence of this result, we obtain that the range of the generalized derivation induced by the above classes of operators is orthogonal to its kernel.

  • PDF

ON f-DERIVATIONS FROM SEMILATTICES TO LATTICES

  • Yon, Yong Ho;Kim, Kyung Ho
    • 대한수학회논문집
    • /
    • 제29권1호
    • /
    • pp.27-36
    • /
    • 2014
  • In this paper, we introduce the notion of f-derivations from a semilattice S to a lattice L, as a generalization of derivation and f-derivation of lattices. Also, we define the simple f-derivation from S to L, and research the properties of them and the conditions for a lattice L to be distributive. Finally, we prove that a distributive lattice L is isomorphic to the class $SD_f(S,L)$ of all simple f-derivations on S to L for every ${\wedge}$-homomorphism $f:S{\rightarrow}L$ such that $f(x_0){\vee}f(y_0)=1$ for some $x_0,y_0{\in}S$, in particular, $$L{\simeq_-}=SD_f(S,L)$$ for every ${\wedge}$-homomorphism $f:S{\rightarrow}L$ such that $f(x_0)=1$ for some $x_0{\in}S$.

계층분석법을 이용한 강의평가 요인도출과 우선순위분석 (Factor Derivation of Course Evaluation and Priority Analysis Using Analytic Hierarchy Process)

  • 안수현;이상준
    • 실천공학교육논문지
    • /
    • 제14권3호
    • /
    • pp.513-522
    • /
    • 2022
  • 강의평가는 대학교육의 질을 향상시키고 수업을 개선하는데 유용한 정보로 활용된다. 본 연구는 강의평가를 구성하는 요인을 탐색하고자 선행연구와 FGI를 통해 구성요인을 도출하고 계층분석법(AHP: Analytic Hierarchy Process)을 통해 요인간 상대적 중요도 및 우선순위를 파악하였다. 이를 위해 5개의 구성요인과 15개의 평가항목을 도출하였다. 강의평가 요인개발의 전문성과 공정성을 확보하기 위해 학생과 교원을 대상으로 설문을 실시하여 총 20부의 유효한 자료를 수집하였고, 일치도 검증을 완료한 자료를 토대로 각 평가항목의 가중치를 산출하였다. 분석 결과 강의평가 요인구성에 있어서 학생은 수업 내용, 수업 방법, 수업 운영, 수업 평가, 수업 계획 순으로, 교원은 수업 내용, 수업 운영, 수업 방법, 수업 평가, 수업 계획 순으로 중요하다고 평가하였다. 본 연구 결과를 바탕으로 대학교육의 질 관리 차원에서 강의평가의 효율성과 신뢰성 향상을 위해 다양한 분석과 연구가 있기를 기대한다.

Range Kernel Orthogonality and Finite Operators

  • Mecheri, Salah;Abdelatif, Toualbia
    • Kyungpook Mathematical Journal
    • /
    • 제55권1호
    • /
    • pp.63-71
    • /
    • 2015
  • Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H into itself. Let $A,B{\in}\mathcal{L}(H)$ we define the generalized derivation ${\delta}_{A,B}:\mathcal{L}(H){\mapsto}\mathcal{L}(H)$ by ${\delta}_{A,B}(X)=AX-XB$, we note ${\delta}_{A,A}={\delta}_A$. If the inequality ${\parallel}T-(AX-XA){\parallel}{\geq}{\parallel}T{\parallel}$ holds for all $X{\in}\mathcal{L}(H)$ and for all $T{\in}ker{\delta}_A$, then we say that the range of ${\delta}_A$ is orthogonal to the kernel of ${\delta}_A$ in the sense of Birkhoff. The operator $A{\in}\mathcal{L}(H)$ is said to be finite [22] if ${\parallel}I-(AX-XA){\parallel}{\geq}1(*)$ for all $X{\in}\mathcal{L}(H)$, where I is the identity operator. The well-known inequality (*), due to J. P. Williams [22] is the starting point of the topic of commutator approximation (a topic which has its roots in quantum theory [23]). In [16], the author showed that a paranormal operator is finite. In this paper we present some new classes of finite operators containing the class of paranormal operators and we prove that the range of a generalized derivation is orthogonal to its kernel for a large class of operators containing the class of normal operators.

DERIVATIONS OF A NON-ASSOCIATIVE GROWING ALGEBRA

  • Choi, Seul Hee
    • 호남수학학술지
    • /
    • 제40권2호
    • /
    • pp.227-237
    • /
    • 2018
  • There are various papers on finding all the derivations of a non-associative algebra and an anti-symmetrized algebra. We find all the derivations of a growing algebra in the paper. The dimension of derivations of the growing algebra is one and every derivation of the growing algebra is outer. We show that there is a class of purely outer algebras in this work.

On Self-commutator Approximants

  • Duggal, Bhagwati Prashad
    • Kyungpook Mathematical Journal
    • /
    • 제49권1호
    • /
    • pp.1-6
    • /
    • 2009
  • Let B(X) denote the algebra of operators on a complex Banach space X, H(X) = {h ${\in}$ B(X) : h is hermitian}, and J(X) = {x ${\in}$ B(X) : x = $x_1$ + $ix_2$, $x_1$ and $x_2$ ${\in}$ H(X)}. Let ${\delta}_a$ ${\in}$ B(B(X)) denote the derivation ${\delta}_a$ = ax - xa. If J(X) is an algebra and ${\delta}_a^{-1}(0){\subseteq}{\delta}_{a^*}^{-1}(0)$ for some $a{\in}J(X)$, then ${\parallel}a{\parallel}{\leq}{\parallel}a-(x^*x-xx^*){\parallel}$ for all $x{\in}J(X){\cap}{\delta}_a^{-1}(0)$. The cases J(X) = B(H), the algebra of operators on a complex Hilbert space, and J(X) = $C_p$, the von Neumann-Schatten p-class, are considered.

새로운 형태의 Closed-Form 그린함수의 유도를 위한 근사 경로의 최적선택 (An Optimum Choice of Approximation Path for Derivation of New Class of Closed-Form Green's Functions)

  • 이영순;김의중
    • 한국전자파학회논문지
    • /
    • 제16권4호
    • /
    • pp.418-426
    • /
    • 2005
  • 본 논문에저는 MoM 행렬 요소의 해석적 계산이 가능한 새로운 형태의 closed-form 그린함수 유도를 위한 최적의 근사화 경로 선택을 3-단계 근사화 방법 및 SDP(Steepest Descent Path) 방법을 고려하여 제시하였다. 본 논문의 방법으로 유도된 새로운 형태의 closed-form그린함수 계산 결과가 기존의 방법과 달리 파수 영역 그린함수의 사전조사 없이도 넓은 주파수 범위에서 보다 정확한 결과를 주고 있음을 알 수 있었다. 본 논문이 제안하는 방법의 타당성을 확인하기 위하여 몇 가지 수치 결과들을 제시하였다.

n-DIMENSIONAL CONSIDERATIONS OF EINSTEIN'S CONNECTION FOR THE THIRD CLASS

  • Hwang, In-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제6권2호
    • /
    • pp.575-588
    • /
    • 1999
  • Lower dimensional cases of Einstein's connection were al-ready investigated by many authors for n =2,4. This paper is to ob-tain a surveyable tensorial representation of n-dimensional Einstein's connection in terms of the unified field tensor with main emphasis on the derivation of powerful and useful recurrence relations which hold in n-dimensional Einstein's unified field theory(i.e., n-*g-UFT): All con-siderations in this paper are restricted to the third class only.

EIGHT-DIMENSIONAL EINSTEIN'S CONNECTION FOR THE SECOND CLASS I. THE RECURRENCE RELATIONS IN 8-g-UFT

  • CHUNG, KYUNG TAE;HAN, SOO KYUNG;HWANG, IN HO
    • 호남수학학술지
    • /
    • 제26권4호
    • /
    • pp.509-532
    • /
    • 2004
  • Lower dimensional cases of Einstein's connection were already investigated by many authors for n = 2, 3, 4, 5, 6, 7. This paper is the first part of the following series of two papers, in which we obtain a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor, with main emphasis on the derivation of powerful and useful recurrence relations which hold in 8-dimensional Einstein's unified field theory(i.e., 8-g-UFT): I. The recurrence relations in 8-g-UFT II. The Einstein's connection in 8-g-UFT All considerations in these papers are restricted to the second class only, since the case of the first class are done in [1], [2] and the case of the third class, the simplest case, was already studied by many authors.

  • PDF