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Abstract. Let H be a separable infinite dimensional complex Hilbert space, and let L(H)

denote the algebra of all bounded linear operators on H into itself. Let A,B ∈ L(H) we

define the generalized derivation δA,B : L(H) 7→ L(H) by δA,B(X) = AX −XB, we note

δA,A = δA. If the inequality ||T − (AX −XA)|| ≥ ||T || holds for all X ∈ L(H) and for all

T ∈ kerδA, then we say that the range of δA is orthogonal to the kernel of δA in the sense

of Birkhoff. The operator A ∈ L(H) is said to be finite [22] if ||I − (AX −XA)|| ≥ 1(∗)
for all X ∈ L(H), where I is the identity operator. The well-known inequality (*), due to

J. P. Williams [22] is the starting point of the topic of commutator approximation (a topic

which has its roots in quantum theory [23]). In [16], the author showed that a paranormal

operator is finite. In this paper we present some new classes of finite operators containing

the class of paranormal operators and we prove that the range of a generalized derivation

is orthogonal to its kernel for a large class of operators containing the class of normal

operators.

1. Introduction

Let H be a separable infinite dimensional complex Hilbert space, and let L(H)
denote the algebra of all bounded linear operators on H into itself. Given A,B ∈
L(H), we define the generalized derivation δA,B : L(H) 7→ L(H) by δA,B(X) =
AX −XB, we note δA,A = δA.
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Recall that for elements a, b of a Banach algebra V, we say that b is orthogonal
to a , written b⊥a, provided

||a|| = dist(a,Cb),

so that the line a+Cb is tangent to the ball of center 0 and radius ||a||; when V = H
is a Hilbert space this agrees with the usual inner product (a, b) = 0. Thus when
b⊥a then the expression ||a+ λb|| has global minimum when λ = 0.

We say that the operator A ∈ L(H) is finite if for all X ∈ L(H), we have
||I−(AX−XA)|| ≥ 1. The first important contribution to the study of commutators
is due to A.Wintner who in 1947 proved that the identity element 1 in a unital,
normed algebra A is not a commutator, that is, there are no elements A and B
such that 1 = AB − BA. Like much good mathematics, Wintner’s theorem has
its roots in physics. Indeed, it was prompted by the fact that the linear maps P
and Q representing the quantum-mechanical momentum and position, respectively,
satisfy the commutation relation PQ − QP = (−ih/2π)I, where h is the Planck’s
constant and I the identity operator on the underlying Hilbert space. The related
topic of approximation by commutators AX − XA or by generalized commutator
AX − XB, which has attracted much interest, has its roots in quantum theory.
The most striking property of Heisenberg’s infinite matrices for the position and
momentum is that they do not commute.

[X,P ] = XP − PX = ih

and this result did not have a clear physical interpretation in the beginning.
In March 1926, working in Bohr’s institute, Heisenberg realized that the non-
commutativity implies the uncertainty principle. This was a clear physical inter-
pretation for the non-commutativity, and it laid the foundation for what became
known as the Copenhagen interpretation of quantum mechanics. Heisenberg showed
that the commutation relations implies an uncertainty. Any two variables that do
not commute cannot be measured simultaneously-the more precisely one is known,
the less precisely the other can be known. The Heisenberg Uncertainty principle
may be mathematically formulated as saying that there exists a pair A,X of linear
transformation and a non-zero scalar α such that

(1.1) AX −XA = αI.

Clearly, (1) cannot hold for square matrices A and X. To see this, just take
the trace of both sides (1). Nor (1) hold for bounded linear operators A and X.
This prompts the question: How close AX − XA to be the identity? In 1973
J. H. Anderson proved the remarkable result that there exists a bounded linear
operator A such that I belongs to the closure in the norm topology of the set of the
commutators AB − BA, that is, I ∈ R(δA). In other words the distance between
the identity operator and the commutator AX −XA is minimal and equal to zero.
Hence Anderson’s result minimizes the distance between the identity operator and
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the commutator AX − XA. Now by the inequality ||AX − XB − I|| ≥ 1 we also
minimize the distance between the identity and AX − XB. Here the distance is
maximal and equal to 1.

Let A ∈ L(H), the approximate reduced spectrum of A, σra(A), is the set of
scalars λ for which there exists a normed sequence {xn} in H satisfying

(A− λ)xn → 0, and (A− λ)∗xn → 0.

J. P. Williams in [22], proved that the class of finite operators, F, contains every
normal, hyponormal operators. In [13], J. P. Williams results are generalized to a
more general classes of operators containing the classes of normal and hyponormal
operators.

For any operator A in B(H) set, as usual, |A| = (A∗A)
1
2 and [A∗, A] =

A∗A−AA∗ = | A |2−| A∗ |2 (the self commutator of A), and consider the following
standard definitions: A is normal if A∗A = AA∗, hyponormal if A∗A − AA∗ ≥ 0
and p-hyponormal if (A∗A)p ≥ (AA∗)p, where p > 0. This definition is due to
Aluthge [4] and many authors studied interesting properties of p-hyponormal oper-
ators by using Aluthge transform (see [4], [17]). An operator A ∈ L(H) is said to
be normaloid if ||A|| = r(A), where r(A) is the spectral radius of A, paranormal if

||Ax||2 ≤ ||A2x||||x||, for allx ∈ H.

An operator A ∈ B(H) is said to be spectraloid if ω(A) = r(A), where r(A) (resp.
ω(A)) spectral radius (resp. numerical radius) of A. We have

hyponormal ⊂ p− hyponormal ⊂ paranormal ⊂ normaloid ⊂ spectraloid.

A is said to be a class Yα operator for α ≥ 1 (or A ∈ Yα) if there exists a
positive number kα such that

|AA∗ −A∗A|α ≤ k2α(A− λI)∗(A− λI) for allλ ∈ C.

It is known that Yα ⊂ Yβ if 1 ≤ α ≤ β. Let Y = ∪1≤αYα. We remark that a
class Y1 operator A is M -hyponormal, i.e., there exists a positive number M such
that

(A− λI)(A− λI)∗ ≤ M2(A− λI)∗(A− λI) for allλ ∈ C,

andM -hyponormal operators are class Y2 operators (see [21]). A is said to dominant
if for any λ ∈ C there exists a positive number Mλ such that

(A− λI)(A− λI)∗ ≤ M2
λ(A− λI)∗(A− λI).

It is obvious that dominant operators are M -hyponormal. But it is known that
there exists a dominant operator which is not a class Y1 operator, and also there
exists a class Y2 operator which is not dominant. We have

normal ⇒ hyponormal ⇒ M -hyponormal ⇒ classY2
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J. H. Anderson and Foias [2] proved that if A and B are normal, T is an
operator such that AT = TB, then

||T − δA,B(X)|| ≥ ||T ||, for allX ∈ L(H). (2)

Hence the range of δA,B is orthogonal to the kenel of δA,B . The inequality
||T − (AX −XA)|| ≥ ||T ||, for all X ∈ L(H) and for all T ∈ kerδA means that the
range of δA is orthogonal to the kernel of δA in the sense of Birkhoff. In [16], the
author showed that a paranormal operator is finite. In this paper we will extend the
last inequality for a large class of operators containing the class of normal operators
and we prove that a class Y operator and a spectraloid operator are finite.

2. Main Results

We begin by the following well known proposition.

Proposition 2.1.([5, Berberian technique]) Let H be a complex Hilbert space. Then
there exists a Hilbert space H̃ ⊃ H and φ : L(H) → L(H̃) (A 7→ Ã) satisfying:

φ is an *-isometric isomorphism preserving the order such that
(i) φ(A∗) = φ(A)∗, φ(I) = Ĩ , φ(αA+ βB) = αφ(A) + βφ(B),
φ(AB) = φ(A)φ(B), ||φ(A)|| = ||A||, φ(A) ≤ φ(B), ifA ≤ B, for all A,B ∈

L(H), α, β ∈ C.
(ii) σ(A) = σ(Ã) and σa(A) = σa(Ã) = σp(Ã), where σa(A) is the approximate

spectrum of A and σp(A) is the point spectrum of A.

In the following theorems we will present some classes of finite operators.

Lemma 2.2. If S is class Y, then σar(S) ̸= ϕ.

Proof. It is known that σar(S) ⊂ σa(S). Since σa(S) ̸= ϕ, it suffices to prove that
σa(S) ⊂ σar(S). If S ∈ Y, then there exists α ≥ 1 and kα > 0 such that

∥ | SS∗ − S∗S |
α
2 x ∥≤ kα ∥ (S − λI)x ∥ for allx ∈ H and for allλ ∈ C.

Since

(S − µI)(S − µI)∗ = SS∗ − S∗S + (S − µI)∗(S − µI) for allµ ∈ C,

then

| ⟨(SS∗ − S∗S)x, x⟩ |≤
∥∥∥|SS∗ − S∗S|

1
2 x

∥∥∥2 , for allx ∈ H.

Indeed, consider the polar decomposition of the operator SS∗ − S∗S = V D,
where D = |SS∗ − S∗S|. Then V is a Hermitian partial isometry which commutes
with D because SS∗ − S∗S is Hermitian. Hence, for any x ∈ H such that ∥x∥ = 1

|⟨(SS∗ − S∗S)x, x⟩| ≤
∣∣∣⟨|SS∗ − S∗S|

1
2 x, |SS∗ − S∗S|

1
2 V ∗x

⟩∣∣∣
≤

∥∥∥|SS∗ − S∗S|
1
2 x

∥∥∥ ∥∥∥|SS∗ − S∗S|
1
2 V ∗x

∥∥∥
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=
∥∥∥|SS∗ − S∗S|

1
2 x

∥∥∥∥∥∥V ∗ |SS∗ − S∗S|
1
2 x

∥∥∥ ≤
∥∥∥|SS∗ − S∗S|

1
2 x

∥∥∥2 .
Consequently

∥(S − µI)∗x∥2 ≤ ∥(S − µI)x∥2 +
∥∥∥|SS∗ − S∗S|

1
2 x

∥∥∥2 , (3)

for all µ ∈ C and for all x ∈ H. Let λ ∈ σa(S), then there exists a normed sequence
{xn}n ⊂ H such that ∥(S − λI)xn∥ → 0. Therefore for λ = µ, xn = x, and for all
n we get

|||SS∗ − S∗S|
1
2xn||2α ≤ |||SS∗ − S∗S|α2 xn||2||xn||2(α−1)

≤ k2α||(S − µI)xn||2||xn||2(α−1). (4)

The first inequality holds by Holder-McCarthy inequality, (i.e., ⟨Tx, x⟩α ≤
⟨Tαx, x⟩⟨x, x⟩α−1 for all α ≥ 1 and T ≥ 0).

By applying (3) and (4) we deduce that

∥(S − µI)∗x∥2 ≤ ∥(S − µI)x∥2 + k
2
α
α ∥(S − µI)x∥

2
α , for alln.

Therefore ∥(S − µI)∗x∥ → 0 and λ ∈ σar(S), that is, σar(S) ̸= ϕ. 2

Theorem 2.3. Let A ∈ L(H) be class Y. Then A is finite.

Proof. It is well known [13] that if σar(A) ̸= ϕ, then A is finite. Hence it suffices to
apply the previous lemma. 2

Now we are ready to prove that a specraloid operator is finite. For this we need
the following lemma.

Lemma 2.4.([13]) Let A ∈ L(H). Then ∂W (A) ∩ σ(A) ⊂ σar(A).

Theorem 2.5. Let A ∈ L(H) be spectraloid. Then A is finite.

Proof. Since A is spectraloid, we have ω(A) = r(A). Then there exists λ ∈ σ(A) ⊂
W (A) such that |λ| = ω(A). Thus λ ∈ ∂W (A). This implies that ∂W (A)∩σ(A) ̸= ∅.
Now by applying Lemma 2.2, we get the result. 2

In [7] authors, Furuta, Ito and Yamazaki introduced the class A operators,
respectively class A(k) of operators defined as follows: for each k > 0, an operator
T is class A(k) operator if

(2.1)
(
T ∗|T |2kT

) 1
k+1 ≥ |T |2,

An operator T ∈ L(H) is said to be absolute -k-paranormal if |||T |kTx|| ≥
||Tx||k+1 for every unit vector x ∈ H. On other hand Fujii, Izumino and
Nakamoto [9] introduced p-paranormal operators for p > 0 as another general-
ization of paranormal operators. An operator T is said to be p-paranormal if
|||T |p|U |T px|| ≥ |||T |px||2 for every unit vector x ∈ H, where T = U |T | is the po-
lar decomposition of T . In [7] the authors showed inclusion relations among these
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classes. Fujii, Jung, S.H. Lee, M.Y.Lee and Nakamoto [8] introduced class A(p, r)
as further generalization of class A(k). An operator T ∈ A(p, r) for p > 0 and
r > 0 if (|T ∗|r|T ∗|2p)

r
p+r ≥ |T ∗|2r and class AI(p, r) is class of invertible operators

which belong to class A(p, r). Yamazaki and Yanagida [24] introduced the notion
of absolute-(p, r)-paranormal operators. It is a further generalization of classes
of both absolute-k-paranormal operators and p-paranormal operators as a parallel
concept of class A(p, r). An operator T is said to be absolute-(p, r)-paranormal
if |||T |p|T ∗|rx||r ≥ |||T ∗|rx||p+r for every unit vector x ∈ H and for positive real
numbers p > 0 and r > 0 or equivalently |||T |p|T ∗|rx||r||x|| ≥ |||T ∗|rx||p+r for every
x ∈ H and for positive real numbers p > 0 and r > 0. Concerning the connections
between all these classes we have

normal ⇒ hyponormal ⇒ p− hyponormal ⇒ ClassA ⇒ paranormal ⇒

⇒ absolute-k -paranormal ⇒ absolute-(p, r)-paranormal

⇒ normaloid ⇒ spectraloid ⇒ finite.

For more details concerning the connections between these operators the reader
is referred to [24].

In the following theorem we will show that an absolute-(p, r)-paranormal oper-
ator is finite.

Theorem 2.6. Let A ∈ L(H). If A is absolute-(p, r)-paranormal, then A is finite.
Proof. Since an absolute-(p, r)-paranormal operator A is normaloid [18], hence

A is spectraloid. But a spectraloid operator A is finite by Theorem 2.2, then A is
finite. 2

Lemma 2.7. If A is class Y (resp. absolute-(p, r)-paranormal ) and T is a normal
operator such that AT = TA, then for every λ ∈ σp(T ) (point spectrum of T ),

|λ| ≤ ||T − (AX −XA)||, for allX ∈ L(H).

Proof. Let λ ∈ σp(T ) and Mλ be the eigenspace associated with λ. Since AT = TA,
we have T ∗A = AT ∗ by Fuglede-Putnam’s theorem. Hence Mλ reduces both A and
T . According to the decomposition of H, we can write A, T and X as follows:

A =

[
A1 0
0 A2

]
T =

[
λ 0
0 T2

]
andX =

[
X1 X2

X3 X4

]
,

where A1 is class Y (resp. absolute-(p, r-paranormal)[21, 18]. By applying Theorem
2.1 and Theorem 2.3, we get

||T − (AX −XA)|| =
∥∥∥∥[ λ− (A1X1 −X1A1) ∗

∗ ∗

]∥∥∥∥ ≥ ||λ− (A1X1 −X1A1)||
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≥ |λ|||1− (A1(
X1

λ
)− (

X1

λ
)A1)|| ≥ |λ|

2

Theorem 2.8. If A is class Y (resp. spectraloid), then for every normal operator
T such that AT = TA, we have

||T − (AX −XA)|| ≥ ||T ||, for allX ∈ L(H).

Hence the range of δA is orthogonal to the kernel of δA.

Proof. Let λ ∈ σ(T ) = σa(T )[10], then it follows from Proposition 2.1 that T̃ is
normal, Ã is finite, T̃A = T̃ Ã = ÃT̃ and λ ∈ σp(Ã). By applying Lemma 2.3, we
get for all X ∈ L(H)

|λ| ≤ ||T̃ − (ÃX̃ − X̃Ã)|| = ||T − (AX −XA)||.

Hence
sup

λ∈σ(T̃ )

|λ| = ||T̃ || = ||T || = r(T ) ≤ ||T − (AX −XA)||,

for all X ∈ L(H). 2

Theorem 2.9. Let A be a C∗-algebra and let a ∈ A be a class Y (resp. absolute-
(p, r)-paranormal) operator. Then a is finite.

Proof. It is known [[11], p.97] that there exists a *-isometric homomorphism φ and
a Hilbert space H(φ : A 7−→ L(H) ). Since a ∈ A is a class Y operator (resp.
absolute-(p, r)-paranormal operator), φ(a) is a class Y operator (resp. absolute-
(p, r)-paranormal operator). Since φ is isometric, it results from the previous theo-
rem that a is finite. 2

Corollary 2.10. Let A ∈ L(H) be class Y (resp. absolute-(p, r)-paranormal). Then
T = A+K is finite, where K is a compact operator.

Proof. Since the Calkin algebra L(H)/K(H) is a C∗- algebra, [A] ∈ L(H)/K(H) is
class Y (resp. absolute-(p, r)-paranormal operator). Hence it follows from Theorem
2.5 that [A] is finite and we have

∥I − TX −XT∥ ≥ ∥[I]− [A][X]− [X][A]∥ ≥ ∥I∥ = 1. 2

Acknowledgments. The author wishes to thank the referee for a careful reading
and valuable comments for the original draft.

References

[1] J. H. Anderson, On normal derivation, Proc. Amer. Math. Soc., 38(1973), 135-140.
MR0312313



70 Salah Mecheri and Toualbia Abdelatif

[2] J. H. Anderson and C. Foias, Properties which normal operator share with normal
derivation and related operators, Pacific. Jour. Math., (1973), 313-325.

[3] T. Ando, Operators with a norm condition, Acta. Sci. Math.(Szeged), 33(1972), 169-
178.

[4] Aluthge, On p-hyponormal operators for 0 < p < 1, Integr. Equat. Oper. Th.,
13(1990), 307-315.

[5] S. K. Berberian, Approximate proper values, Proc. Amer. Math. Soc., 13(1962), 111-
114.

[6] M. Fujii, C. Himeji and A. Matsumoto, Theorems of Ando and Saito for p-hyponormal
operators, Math. Japonica, 39(1994), 595-598.

[7] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including
class of log-hyponormal and severel related classes, Scientiae Mathematicae 1(1998),
389-403.

[8] M. Fujii, D. Jung, S. H. Lee , M. Y. Lee and R. Nakamoto. Some classes of operators
related to paranormal and log-hyponormal operators, Math. Japan, 51(3)(2000), 395-
402.

[9] M. Fujii, S. Izumino and R. Nakamoto, Classes of operators determined by the Heinz-
Kato-Furuta inequality and the Holder-Mc. Carthy inequality, Nihonkai Math. J.,
1(5)(1994), 61-67.

[10] P. R. Halmos, Hilbert space problem book, springer Verlag, New York (1962).

[11] D. A. Herrero, Approximation of Hilbert space operator I, Pitman Advanced publish-
ing program, Boston, London-Melbourne (1982).

[12] I. H. Jeon, K. Tanahashi and A. Uchiyama,On quasisimilarity for log-hyponormal
operator, Glasgow Math. J., 46(2004), 169-176.

[13] S. Mecheri, Finite operators., Demonstratio Math., 35(2002), 355-366.

[14] S. Mecheri, Non-normal derivation and orthogonality., Proc. Amer. Math. Soc., 133
(2005), 759-762.

[15] S. Mecheri, K. Tanahashi and A. Uchiyama, Fuglede-Putnam’s theorem for class Y or
p-hyponormal operators, Bull. Korean Math. Soc., 4(2006), 747-753.

[16] S. Mecheri, Finite Operators and Orthogonality, Nihonkai Math. J., 19(2008), 53-60.

[17] S. M. Patel, On Intertwining p-hyponormal operators, Indian J. Math., 38(1996),
287–290.

[18] D. Senthilkumar, P. Mahaswari, Weyl’s theorem for algebraically absolute-(p, r)-
paranormal operators, Banach J. Math. Anal., 5(2011), 29-37.

[19] K. Tanahashi, On log-hyponormal operators, Integral equations Operator Theory.,
34(1999), 364-372.

[20] A. Uchiyama, Inequalities of Purnam and BergerShaw for p-quasihyponormal opera-
tors, Integr. Equat. Oper. Th., 34(1999), 179-180.

[21] A. Uchiyama and T. Yoshino,On the class Y operators, Nihonkai Math. J., 8(1997),
179–194.

[22] J. P. Williams, Finite operators., Proc. Amer. Math. Soc., 26(1970), 129–135.



Range Kernel Orthogonality and Finite Operators 71

[23] H. Wielandt, ber die Unbeschrnktheit der Operatoren der Quantenmechanik. (Ger-
man) Math. Ann., 121(1949), 21.

[24] T. Yamazaki and M. Yanagida, A further generalization of paranormal operators, Sci.
Math., 2000, 3: 23-31.


