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Abstract. An asymmetric Fuglede-Putnam theorem for p-hyponormal operators and

class (Y) is proved, as a consequence of this result, we obtain that the range of the gener-

alized derivation induced by the above classes of operators is orthogonal to its kernel.

1. Introduction

Let H be an infinite dimensional complex Hilbert space and B(H) be the al-
gebra of all bounded linear operators on H. For a bounded linear operator on a
Hilbert space H, we say that T belongs to the class Yα for some α ≥ 1 if there is a
positive number Kα such that

| TT ∗ − T ∗T |α≤ Kα
2(T − λI)∗(T − λI) for all λ ∈ C.

Let Y =
⋃

α≥1 Yα. It’s well know that for each α, β such that 1 ≤ α ≤ β, we
have Yα ⊆ Yβ .

An operator T ∈ B(H) is said to be p-hyponormal if (T ∗T )p − (TT ∗)p ≥ 0,
(0 < p ≤ 1). If p = 1, T is called hyponormal and if p = 1/2, T is semi-hyponormal.
It’s know that p-hyponormal operators are q-hyponormal operators for 0 < q ≤ p.
Hyponormal operators have been studied by many authors and it is known that
hyponormal operators have many interesting properties similar to those of normal
operators. Semi-hyponormal operators were first introduced by D. Xia [14], p-
hyponormal operators have been studied by A. Aluthge [1], M. Cho [4], [5] and A.
Uchiyama [11]. See [11] for properties of the class (Y). The set of all p-hyponormal
is denoted by p−H.

Given A,B ∈ B(H), we define the generalized derivation δA,B : B(H) → B(H)
by δA,B(X) = AX −XB.
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J. Anderson and C. Foias [3] proved that if A and B are normal operators, then
R(δA,B) is orthogonal to ker(δA,B), where R(δA,B) and ker(δA,B) denotes the range
of δA,B and the kernel of δA,B respectively. The orthogonality here is understood
to be in the sense of definition in [2].

The organization of the paper is as follows, in section 2, we recall some results
which will be used in the sequel. In section 3, we study the range-kernel orthogo-
nality of certain operators.

2. Preliminaries

In this section, we recall some results which will be used in the sequel.

Definition 2.1. Given A,B ∈ B(H). We say that the pair (A,B) has (FP )B(H) the
Fuglede-Putnam property if AC = CB for some C ∈ B(H), implies A∗C = CB∗.

Theorem 2.2 ([1]). If T ∈ p −H and T = U | T | the polar decomposition of T ,
then | T |1/2 U | T |1/2 is hyponormal for 1/2 ≤ p ≤ 1.

The next theorem is due to Duggal [6]. This theorem plays important role in
our arguments.

Theorem 2.3 ([6]). Let A,B ∈ B(H). The following assertions are equivalent:

(i) The pair (A,B) has the property (FP )B(H).

(ii) If AC = CB for some C ∈ B(H), then R(C) reduces A, (kerC)⊥ reduces B
and A |

R(C)
and B |(ker C)⊥ are normal operators.

Theorem 2.4 ([13]). If T ∈ p−H and M be an invariant subspace of T for which
T |M is normal, then M reduces T .

3. Main results

In this section, we prove that the Fuglede-Putnam’s Theorem holds when A ∈
p−H and B∗ ∈ Y.

Theorem 3.1. If A ∈ p − H and B∗ ∈ Y, then the pair (A,B) has the property
(FP )B(H).

Proof. (Case 1. 1/2 ≤ p ≤ 1). Suppose that AC = CB for some C ∈ B(H). Let’s
consider the following decompositions of H

H = (kerA)⊥ ⊕ (ker A) = (kerB∗)⊥ ⊕ (kerB∗)

kerA reduces A by [5] and kerB∗ reduces B∗ by [12] and so, we can write A, B
and C as follows:

A =
[

A1 0
0 0

]
, B =

[
B1 0
0 0

]
, and C =

[
C1 C2

C3 C4

]
·



An Asymmetric Fuglede-Putnam’s Theorem and Orthogonality 499

From AC = CB, it follows that A1C1 = C1B1 and A1C2 = C3B1 = 0. Since A1

and B∗
1 are injective, we have C2 = C3 = 0. Let’s consider the equality

(3.1) A1C1 = C1B1

Let’s multiply the two members of (3.1) by | A1 |1/2 and uses the polar decomposi-
tion of A1 = V | A1 |, we obtain

(3.2) | A1 |
1
2 V | A1 |

1
2 (| A1 |

1
2 C1) = (| A1 |

1
2 C1)B1

Since B1 ∈ Y by [12], there exists an integer n > 1 and k2n such that B1 ∈ (Y2n)
i.e.,

| B1B
∗
1 −B∗

1B1 |2
n ≤ k2

2n(B1 − λ)(B1 − λ)∗, ∀λ ∈ C.

Then, by [8], for all x ∈ R(| B1B
∗
1 −B∗

1B1 |2
n−1), there exist a bounded function

f(λ) : C→ H such that

(3.3) (B − λI)f(λ) = x.

Let’s multiply the members of (3.3) by (| A1 |
1
2 C1) and uses (3.1). Hence

(| A1 |) 1
2 C1)x = (| A1 | 12 C1)(B1 − λI)f(λ)

= (| A1 | 12 V | A1 | 12 −λI)(| A1 | 12 C1)f(λ), ∀λ ∈ C.

Since | A1 | 12 V | A1 | 12 is hyponormal. If (| A1 |) 1
2 C1)f 6= 0, then (| A1 | 12 C1)f

is a bounded entire function by [9]. This yields that the function is constant by
Liouvilles’s Theorem. This is a contradiction. Hence (| A1 | 12 C1)x = 0, for all
x ∈ R(| B1B

∗
1 −B∗

1B1 |2
n−1), i.e., (| A1 | 12 C1) | B1B

∗
1 − B∗

1B1 |2n−1 H = {0}.
Since ker(| B1B

∗
1 −B∗

1B1 |2n−1) = ker(| B1B
∗
1 −B∗

1B1 |2), we have

(| A1 | 12 C1)(| B1B
∗
1 −B∗

1B1 |2)x = 0, ∀x ∈ H.

Since | A1 | is one-to-one, we obtain

(3.4) C1(| B1B
∗
1 −B∗

1B1 |2)x = 0, ∀x ∈ H.

From equality (3.1), R(C1) and kerC1 are invariant subspaces of A1 and B1 respec-
tively. According to the following decompositions

(kerA1)⊥ = R(C1)⊕R(C1)⊥, (ker B1)⊥ = (kerC1)⊥ ⊕ kerC1,

we can write A1, B1 and C1 as follows

A1 =
[

A11 S
0 T

]
, B1 =

[
B11 0
E G

]
, and C1 =

[
C11 0
0 0

]
·
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The equality (3.1) would imply that

(3.5) A11C11 = C11A11,

where A11 is p-hyponormal by [11]. Since

B1B
∗
1 −B∗

1B1 =
[

B11B
∗
11 −B∗

11B11 − E∗E S1

S∗1 R1

]
,

we have

(B1B
∗
1 −B∗

1B1)2 =
[

(B11B
∗
11 −B∗

11B11 − E∗E)2 + S1S
∗
1 S2

S∗2 R2

]
·

Hence C11[(B11B
∗
11 − B∗

11B11 − E∗E)2 + S1S
∗
1 ] = 0 from equality (3.4). Since C11

is one-to-one and B11B
∗
11 −B∗

11B11 − E∗E is self-adjoint, we obtain

(3.6) B11B
∗
11 −B∗

11B11 − E∗E = 0.

Hence B∗
11 is hyponormal. Let’s the two members of (3.5) by (| A11 | 12 ) and

uses the polar decomposition of A11 = U | A11 |, we obtain

Ã11(| A11 |1/2 C11) = (| A11 |1/2 C11)B11.

Since the Aluthge transform Ã11 = | A11 |1/2
U | A11 |1/2 is hyponormal by [1] and

B∗
11 is hyponormal from equality (3.6), The pair (Ã11, B11) has the (FP )B(H) prop-

erty by [7] and consequently

Ã11

∗
(| A11 |1/2 C11) = (| A11 |1/2 C11)B∗

11.

Hence A11|
R(|A1/2

11 C11)
and B11|[ker(|A11|1/2)C11)]⊥ are normal operators by Theo-

rem 2.3.
Since | A11 |1/2 and C11 are injective, then | A11 |1/2 C11 is also injective. Hence

[ker(| A11 |1/2)C11)]⊥ = 0⊥ = (kerC11)⊥. By similar arguments as before, we have
the following equality.

R(| A11 |1/2 C11) = [ker C∗11 | A11 |1/2]⊥ = 0⊥ = R(C11).

Hence Ã11 is normal. Thus A11 is normal by [10]. Therefore R(C11) reduces A11

by theorem 2.4 and (kerC11)⊥ reduces B∗
11 by [12]. Finally, we obtain:

A∗11C11 = C11B
∗
11 and A∗1C1 = C1B

∗
1 , and therefore A∗C = CB∗.

(Case 2. 0 < p ≤ 1/2). We put p′ = p + 1/2, where 1/2 < p′ ≤ 1. The rest of
the proof is similar to the proof of the first case. ¤

Corollary 3.2. A is normal if and only if A ∈ p−H and A∗ ∈ Y.

Proof. Put B = A∗. ¤
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Theorem 3.3. If A ∈ p−H and B∗ ∈ Y, then R(δA,B) is orthogonal to ker(δA,B).

Proof. The pair (A,B) has the (FP )B(H) property by theorem 3.1. Let C ∈ B(H)
be such AC = CB. According to the following decompositions of H.

H = H1 = R(C)⊕ (R(C))⊥, H = H2 = (kerC)⊥ ⊕ kerC.

We can write A, B, C and X

A =
[

A1 0
0 A2

]
, B =

[
B1 0
0 B2

]
, C =

[
C1 0
0 0

]
, X =

[
X1 X2

X3 X4

]
,

where A1 and B1 are normal operators and X is an operator on H1 to H2. Since
AC = CA, we obtain A1C1 = C1A1. Hence

AX −XA− C =
[

A1X1 −X1B1 − C1 A2X2 −X2B2

A1X3 −X3B1 A2X4 −X4B2

]
·

Since C1 ∈ ker(δA1,B1), A1 and B1 are normal, it follows by [3]

‖AX −XB − C‖ ≥ ‖A1X1 −X1B1 − C1‖ ≥ ‖C1‖ = ‖C‖, ∀X ∈ B(H)

This implies that R(δA,B) is orthogonal to ker(δA,B). ¤
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