An Asymmetric Fuglede-Putnam's Theorem and Orthogonality

Bachir Ahmed
Department of Mathematics, Faculty of Science, King Khaled University, Abha, P. O. Box 9004, Kingdom Saudi Arabia
e-mail: bachir_ahmed@hotmail.com

Abdelkder Segres
Department of Mathematics, Mascara University, Algeria
e-mail : sagres03@hotmail.com

Abstract. An asymmetric Fuglede-Putnam theorem for p-hyponormal operators and class (\mathcal{Y}) is proved, as a consequence of this result, we obtain that the range of the generalized derivation induced by the above classes of operators is orthogonal to its kernel.

1. Introduction

Let \mathcal{H} be an infinite dimensional complex Hilbert space and $B(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H}. For a bounded linear operator on a Hilbert space \mathcal{H}, we say that T belongs to the class \mathcal{Y}_{α} for some $\alpha \geq 1$ if there is a positive number K_{α} such that

$$
\left|T T^{*}-T^{*} T\right|^{\alpha} \leq K_{\alpha}{ }^{2}(T-\lambda I)^{*}(T-\lambda I) \text { for all } \lambda \in \mathbb{C}
$$

Let $\mathcal{Y}=\bigcup_{\alpha \geq 1} \mathcal{Y}_{\alpha}$. It's well know that for each α, β such that $1 \leq \alpha \leq \beta$, we have $\mathcal{Y}_{\alpha} \subseteq \mathcal{Y}_{\beta}$.

An operator $T \in B(\mathcal{H})$ is said to be p-hyponormal if $\left(T^{*} T\right)^{p}-\left(T T^{*}\right)^{p} \geq 0$, $(0<p \leq 1)$. If $p=1, T$ is called hyponormal and if $p=1 / 2, T$ is semi-hyponormal. It's know that p-hyponormal operators are q-hyponormal operators for $0<q \leq p$. Hyponormal operators have been studied by many authors and it is known that hyponormal operators have many interesting properties similar to those of normal operators. Semi-hyponormal operators were first introduced by D. Xia [14], phyponormal operators have been studied by A. Aluthge [1], M. Cho [4], [5] and A. Uchiyama [11]. See [11] for properties of the class (Y). The set of all p-hyponormal is denoted by $p-H$.

Given $A, B \in B(\mathcal{H})$, we define the generalized derivation $\delta_{A, B}: B(\mathcal{H}) \rightarrow B(\mathcal{H})$ by $\delta_{A, B}(X)=A X-X B$.

[^0]J. Anderson and C. Foias [3] proved that if A and B are normal operators, then $R\left(\delta_{A, B}\right)$ is orthogonal to $\operatorname{ker}\left(\delta_{A, B}\right)$, where $R\left(\delta_{A, B}\right)$ and $\operatorname{ker}\left(\delta_{A, B}\right)$ denotes the range of $\delta_{A, B}$ and the kernel of $\delta_{A, B}$ respectively. The orthogonality here is understood to be in the sense of definition in [2].

The organization of the paper is as follows, in section 2 , we recall some results which will be used in the sequel. In section 3, we study the range-kernel orthogonality of certain operators.

2. Preliminaries

In this section, we recall some results which will be used in the sequel.
Definition 2.1. Given $A, B \in B(\mathcal{H})$. We say that the pair (A, B) has $(F P)_{B(\mathcal{H})}$ the Fuglede-Putnam property if $A C=C B$ for some $C \in B(\mathcal{H})$, implies $A^{*} C=C B^{*}$.

Theorem 2.2 ([1]). If $T \in p-H$ and $T=U|T|$ the polar decomposition of T, then $|T|^{1 / 2} U|T|^{1 / 2}$ is hyponormal for $1 / 2 \leq p \leq 1$.

The next theorem is due to Duggal [6]. This theorem plays important role in our arguments.

Theorem 2.3 ([6]). Let $A, B \in B(\mathcal{H})$. The following assertions are equivalent:
(i) The pair (A, B) has the property $(F P)_{B(\mathcal{H})}$.
(ii) If $A C=C B$ for some $C \in B(\mathcal{H})$, then $\overline{R(C)}$ reduces A, $(\operatorname{ker} C)^{\perp}$ reduces B and $\left.A\right|_{\overline{R(C)}}$ and $\left.B\right|_{(\operatorname{ker} C) \perp}$ are normal operators.

Theorem 2.4 ([13]). If $T \in p-H$ and M be an invariant subspace of T for which $\left.T\right|_{M}$ is normal, then M reduces T.

3. Main results

In this section, we prove that the Fuglede-Putnam's Theorem holds when $A \in$ $p-H$ and $B^{*} \in \mathcal{Y}$.

Theorem 3.1. If $A \in p-H$ and $B^{*} \in \mathcal{Y}$, then the pair (A, B) has the property $(F P)_{B(\mathcal{H})}$.
Proof. (Case 1. $1 / 2 \leq p \leq 1$). Suppose that $A C=C B$ for some $C \in B(\mathcal{H})$. Let's consider the following decompositions of \mathcal{H}

$$
\mathcal{H}=(\operatorname{ker} A)^{\perp} \oplus(\operatorname{ker} A)=\left(\operatorname{ker} B^{*}\right)^{\perp} \oplus\left(\operatorname{ker} B^{*}\right)
$$

ker A reduces A by [5] and ker B^{*} reduces B^{*} by [12] and so, we can write A, B and C as follows:

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & 0
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{cc}
C_{1} & C_{2} \\
C_{3} & C_{4}
\end{array}\right]
$$

From $A C=C B$, it follows that $A_{1} C_{1}=C_{1} B_{1}$ and $A_{1} C_{2}=C_{3} B_{1}=0$. Since A_{1} and B_{1}^{*} are injective, we have $C_{2}=C_{3}=0$. Let's consider the equality

$$
\begin{equation*}
A_{1} C_{1}=C_{1} B_{1} \tag{3.1}
\end{equation*}
$$

Let's multiply the two members of (3.1) by $\left|A_{1}\right|^{1 / 2}$ and uses the polar decomposition of $A_{1}=V\left|A_{1}\right|$, we obtain

$$
\begin{equation*}
\left|A_{1}\right|^{\frac{1}{2}} V\left|A_{1}\right|^{\frac{1}{2}}\left(\left|A_{1}\right|^{\frac{1}{2}} C_{1}\right)=\left(\left|A_{1}\right|^{\frac{1}{2}} C_{1}\right) B_{1} \tag{3.2}
\end{equation*}
$$

Since $B_{1} \in \mathcal{Y}$ by [12], there exists an integer $n>1$ and $k_{2^{n}}$ such that $B_{1} \in\left(\mathcal{Y}_{2^{n}}\right)$ i.e.,

$$
\left|B_{1} B_{1}^{*}-B_{1}^{*} B_{1}\right|^{2^{n}} \leq k_{2^{n}}^{2}\left(B_{1}-\lambda\right)\left(B_{1}-\lambda\right)^{*}, \forall \lambda \in \mathbb{C}
$$

Then, by [8], for all $x \in R\left(\left|B_{1} B_{1}^{*}-B_{1}^{*} B_{1}\right|^{2^{n}-1}\right)$, there exist a bounded function $f(\lambda): \mathbb{C} \rightarrow \mathcal{H}$ such that

$$
\begin{equation*}
(B-\lambda I) f(\lambda)=x \tag{3.3}
\end{equation*}
$$

Let's multiply the members of (3.3) by $\left(\left|A_{1}\right|^{\frac{1}{2}} C_{1}\right)$ and uses (3.1). Hence

$$
\begin{aligned}
\left.\left(\left|A_{1}\right|\right)^{\frac{1}{2}} C_{1}\right) x & =\left(\left|A_{1}\right|^{\frac{1}{2}} C_{1}\right)\left(B_{1}-\lambda I\right) f(\lambda) \\
& =\left(\left|A_{1}\right|^{\frac{1}{2}} V\left|A_{1}\right|^{\frac{1}{2}}-\lambda I\right)\left(\left|A_{1}\right|^{\frac{1}{2}} C_{1}\right) f(\lambda), \forall \lambda \in \mathbb{C}
\end{aligned}
$$

Since $\left|A_{1}\right|^{\frac{1}{2}} V\left|A_{1}\right|^{\frac{1}{2}}$ is hyponormal. If $\left.\left(\left|A_{1}\right|\right)^{\frac{1}{2}} C_{1}\right) f \neq 0$, then $\left(\left|A_{1}\right|^{\frac{1}{2}} C_{1}\right) f$ is a bounded entire function by [9]. This yields that the function is constant by Liouvilles's Theorem. This is a contradiction. Hence $\left(\left|A_{1}\right|^{\frac{1}{2}} C_{1}\right) x=0$, for all $x \in R\left(\left|B_{1} B_{1}^{*}-B_{1}^{*} B_{1}\right|^{2^{n}-1}\right)$, i.e., $\left(\left|A_{1}\right|^{\frac{1}{2}} C_{1}\right)\left|B_{1} B_{1}^{*}-B_{1}^{*} B_{1}\right|^{2^{n}-1} \mathcal{H}=\{0\}$. Since $\operatorname{ker}\left(\left|B_{1} B_{1}^{*}-B_{1}^{*} B_{1}\right|^{2^{n}-1}\right)=\operatorname{ker}\left(\left|B_{1} B_{1}^{*}-B_{1}^{*} B_{1}\right|^{2}\right)$, we have

$$
\left(\left|A_{1}\right|^{\frac{1}{2}} C_{1}\right)\left(\left|B_{1} B_{1}^{*}-B_{1}^{*} B_{1}\right|^{2}\right) x=0, \forall x \in \mathcal{H}
$$

Since $\left|A_{1}\right|$ is one-to-one, we obtain

$$
\begin{equation*}
C_{1}\left(\left|B_{1} B_{1}^{*}-B_{1}^{*} B_{1}\right|^{2}\right) x=0, \forall x \in \mathcal{H} \tag{3.4}
\end{equation*}
$$

From equality (3.1), $\overline{R\left(C_{1}\right)}$ and ker C_{1} are invariant subspaces of A_{1} and B_{1} respectively. According to the following decompositions

$$
\left(\operatorname{ker} A_{1}\right)^{\perp}=\overline{R\left(C_{1}\right)} \oplus R\left(C_{1}\right)^{\perp},\left(\operatorname{ker} B_{1}\right)^{\perp}=\left(\operatorname{ker} C_{1}\right)^{\perp} \oplus \operatorname{ker} C_{1}
$$

we can write A_{1}, B_{1} and C_{1} as follows

$$
A_{1}=\left[\begin{array}{cc}
A_{11} & S \\
0 & T
\end{array}\right], \quad B_{1}=\left[\begin{array}{cc}
B_{11} & 0 \\
E & G
\end{array}\right], \quad \text { and } \quad C_{1}=\left[\begin{array}{cc}
C_{11} & 0 \\
0 & 0
\end{array}\right]
$$

The equality (3.1) would imply that

$$
\begin{equation*}
A_{11} C_{11}=C_{11} A_{11}, \tag{3.5}
\end{equation*}
$$

where A_{11} is p-hyponormal by [11]. Since

$$
B_{1} B_{1}^{*}-B_{1}^{*} B_{1}=\left[\begin{array}{cc}
B_{11} B_{11}^{*}-B_{11}^{*} B_{11}-E^{*} E & S_{1} \\
S_{1}^{*} & R_{1}
\end{array}\right]
$$

we have

$$
\left(B_{1} B_{1}^{*}-B_{1}^{*} B_{1}\right)^{2}=\left[\begin{array}{cc}
\left(B_{11} B_{11}^{*}-B_{11}^{*} B_{11}-E^{*} E\right)^{2}+S_{1} S_{1}^{*} & S_{2} \\
S_{2}^{*} & R_{2}
\end{array}\right]
$$

Hence $C_{11}\left[\left(B_{11} B_{11}^{*}-B_{11}^{*} B_{11}-E^{*} E\right)^{2}+S_{1} S_{1}^{*}\right]=0$ from equality (3.4). Since C_{11} is one-to-one and $B_{11} B_{11}^{*}-B_{11}^{*} B_{11}-E^{*} E$ is self-adjoint, we obtain

$$
\begin{equation*}
B_{11} B_{11}^{*}-B_{11}^{*} B_{11}-E^{*} E=0 . \tag{3.6}
\end{equation*}
$$

Hence B_{11}^{*} is hyponormal. Let's the two members of (3.5) by $\left(\left|A_{11}\right|^{\frac{1}{2}}\right)$ and uses the polar decomposition of $A_{11}=U\left|A_{11}\right|$, we obtain

$$
\widetilde{A_{11}}\left(\left|A_{11}\right|^{1 / 2} C_{11}\right)=\left(\left|A_{11}\right|^{1 / 2} C_{11}\right) B_{11} .
$$

Since the Aluthge transform $\widetilde{A_{11}}=\left|A_{11}\right|^{1 / 2} U\left|A_{11}\right|^{1 / 2}$ is hyponormal by [1] and B_{11}^{*} is hyponormal from equality (3.6), The pair $\left(\widetilde{A_{11}}, B_{11}\right)$ has the $(F P)_{B(\mathcal{H})}$ property by [7] and consequently

$$
{\widetilde{A_{11}}}^{*}\left(\left|A_{11}\right|^{1 / 2} C_{11}\right)=\left(\left|A_{11}\right|^{1 / 2} C_{11}\right) B_{11}^{*} .
$$

Hence $\left.A_{11}\right|_{R\left(\mid A_{11}^{1 / 2} C_{11}\right)}$ and $\left.B_{11}\right|_{\left.\left[\operatorname{ker}\left(\left|A_{11}\right|^{1 / 2}\right) C_{11}\right)\right]^{\perp}}$ are normal operators by Theorem 2.3.

Since $\left|A_{11}\right|^{1 / 2}$ and C_{11} are injective, then $\left|A_{11}\right|^{1 / 2} C_{11}$ is also injective. Hence $\left.\left[\operatorname{ker}\left(\left|A_{11}\right|^{1 / 2}\right) C_{11}\right)\right]^{\perp}=0^{\perp}=\left(\operatorname{ker} C_{11}\right)^{\perp}$. By similar arguments as before, we have the following equality.

$$
\overline{R\left(\left|A_{11}\right|^{1 / 2} C_{11}\right)}=\left[\operatorname{ker} C_{11}^{*}\left|A_{11}\right|^{1 / 2}\right]^{\perp}=0^{\perp}=\overline{R\left(C_{11}\right)} .
$$

Hence $\widetilde{A_{11}}$ is normal. Thus A_{11} is normal by [10]. Therefore $\overline{R\left(C_{11}\right)}$ reduces A_{11} by theorem 2.4 and $\left(\operatorname{ker} C_{11}\right)^{\perp}$ reduces B_{11}^{*} by [12]. Finally, we obtain:
$A_{11}^{*} C_{11}=C_{11} B_{11}^{*}$ and $A_{1}^{*} C_{1}=C_{1} B_{1}^{*}$, and therefore $A^{*} C=C B^{*}$.
(Case 2. $0<p \leq 1 / 2$). We put $p^{\prime}=p+1 / 2$, where $1 / 2<p^{\prime} \leq 1$. The rest of the proof is similar to the proof of the first case.

Corollary 3.2. A is normal if and only if $A \in p-H$ and $A^{*} \in \mathcal{Y}$.
Proof. Put $B=A^{*}$.

Theorem 3.3. If $A \in p-H$ and $B^{*} \in \mathcal{Y}$, then $R\left(\delta_{A, B}\right)$ is orthogonal to $\operatorname{ker}\left(\delta_{A, B}\right)$.

Proof. The pair (A, B) has the $(F P)_{B(\mathcal{H})}$ property by theorem 3.1. Let $C \in B(\mathcal{H})$ be such $A C=C B$. According to the following decompositions of \mathcal{H}.

$$
\mathcal{H}=\mathcal{H}_{1}=\overline{R(C)} \oplus(\overline{R(C)})^{\perp}, \mathcal{H}=\mathcal{H}_{2}=(\operatorname{ker} C)^{\perp} \oplus \operatorname{ker} C
$$

We can write A, B, C and X

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right], \quad B=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right], \quad C=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & 0
\end{array}\right], \quad X=\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]
$$

where A_{1} and B_{1} are normal operators and X is an operator on \mathcal{H}_{1} to \mathcal{H}_{2}. Since $A C=C A$, we obtain $A_{1} C_{1}=C_{1} A_{1}$. Hence

$$
A X-X A-C=\left[\begin{array}{cc}
A_{1} X_{1}-X_{1} B_{1}-C_{1} & A_{2} X_{2}-X_{2} B_{2} \\
A_{1} X_{3}-X_{3} B_{1} & A_{2} X_{4}-X_{4} B_{2}
\end{array}\right]
$$

Since $C_{1} \in \operatorname{ker}\left(\delta_{A_{1}, B_{1}}\right), A_{1}$ and B_{1} are normal, it follows by [3]

$$
\|A X-X B-C\| \geq\left\|A_{1} X_{1}-X_{1} B_{1}-C_{1}\right\| \geq\left\|C_{1}\right\|=\|C\|, \quad \forall X \in B(\mathcal{H})
$$

This implies that $R\left(\delta_{A, B}\right)$ is orthogonal to $\operatorname{ker}\left(\delta_{A, B}\right)$.

References

[1] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integr. Equat. Oper. Th., 13(1990), 307-315.
[2] J. H. Anderson, On normal derivation, Proc. Amer. Math. Soc., 38(1973), 135-140.
[3] J. H. Anderson and C. Foias, Properties which normal operators share with normal derivations and related operators, Pacific J. Math., 61(1975), 313-325.
[4] M. Chõ, Spectral properties of p-hyponormal operators for $0<p<1 / 2$, Glasgow Math. J., 36(1992), 117-122.
[5] M. Chõ and T. Huruya, p-hyponormal operators for $0<p<1 / 2$, Comment. Math., 33(1993), 23-29.
[6] B. P. Duggal, On intertwining operators, Mh. Math., 106(1988), 139-148.
[7] B. P. Duggal, On dominant operators, Arch. Math., 46(1986), 353-359.
[8] C.R. Putnam, Hyponormal contractions and strong power convergences, Pac. J. Math., 57(1975), 105-110.
[9] J.G.Stampfli and B.L.Wadhwa, On dominant operators, Monatshefte. Für. Math., 84(1977), 33-36.
[10] H. Tadashi, A note on p-hyponormal operators, Proc. Amer. Math. Soc., 125(1997), 221-230.
[11] A. Uchiyama, Berger-Shaw's theorem for p-hyponormal operators, Integr. Equat. Oper. Th., 33(1997), 307-315.
[12] A. Uchiyama and T. Yoshino, On the class MATHCAL(Y) operators, Nihonkai Math. J., 8(1997), 179-194.
[13] A. Uchiyama and K. Tanahashi, Fuglede-Putnam's theorem for p-hyponormal operators, Glasg. Math. J., 3(2002), 397-416.
[14] D. Xia, On the nonnormal operators semi-hyponormal operators, Sci. Sinica, 23(1980), 700-713.

[^0]: Received May 11, 2005, and, in revised form, September 22, 2005.
 2000 Mathematics Subject Classification: 47B47, 47A30, 47B20.
 Key words and phrases: hyponormal operators, derivation, orthogonality, PutnamFuglede property.

