DERIVATIONS OF A NON-ASSOCIATIVE GROWING ALGEBRA

Seul Hee Choi

Abstract

There are various papers on finding all the derivations of a non-associative algebra and an anti-symmetrized algebra. We find all the derivations of a growing algebra in the paper. The dimension of derivations of the growing algebra is one and every derivation of the growing algebra is outer. We show that there is a class of purely outer algebras in this work.

1. Introduction

Let \mathbb{N} be the set of all non-negative integers and \mathbb{Z} be the set of all integers. Let \mathbb{N}^{+}be the set of all positive integers. Let \mathbb{F} be a field of characteristic zero and \mathbb{F}^{\bullet} the set of all non-zero elements in \mathbb{F}. Throughout the paper, we will assume that e is not the element of the field \mathbb{F}. For $n, t \in \mathbb{N}$, throughout the paper, m denotes a nonnegative integer such that $m \leq n+t$. For fixed integers, i_{1}, \cdots, i_{m} and for given irreducible polynomials $f_{1}, \cdots, f_{m} \in \mathbb{F}\left[x_{1}, \cdots, x_{n+t}\right]$, define $\left[f_{1}^{i_{1}}, \cdots, f_{m}^{i_{m}}\right]$ as the set Poly ${ }_{m}=P_{m}=\left\{f_{1}^{i_{1}} \cdots f_{m}^{i_{m}}, f_{1}^{i_{1}} \cdots f_{m-1}^{i_{m-1}}, \cdots\right.$, $\left.f_{2}^{i_{2}} \cdots f_{m}^{i_{m}}, \cdots, f_{1}^{i_{1}}, \cdots, f_{m}^{i_{m}}\right\}$. For any subset P of P_{m}, define the \mathbb{F} algebra $\mathbb{F}\left[e^{ \pm[P]}, n, t\right]:=\mathbb{F}\left[e^{ \pm[P]}, x_{1}^{ \pm 1}, \cdots, x_{n}^{ \pm 1}, x_{n+1}, \cdots, x_{n+t}\right]$, which is spanned by

$$
\begin{aligned}
& \mathbf{B}=\left\{e^{a_{1} f_{1}} \cdots e^{a_{r} f_{r}} x_{1}^{j_{1}} \cdots x_{n+t}^{j_{n+t}} \mid f_{1}, \cdots, f_{r} \in P, a_{1}, \cdots, a_{r} \in \mathbb{Z}\right. \\
& \left.j_{1}, \cdots, j_{n} \in \mathbb{Z}, j_{n+1}, \cdots, j_{n+t} \in \mathbb{N}\right\}
\end{aligned}
$$

We then denote $\partial_{h_{1}}^{r_{1}} \cdots \partial_{h_{r}}^{r_{r}}$ by the composition of the partial derivatives $\partial_{h_{1}}, \cdots, \partial_{h_{r}}$ on $\mathbb{F}\left[e^{ \pm[P]}, n, t\right]$ with appropriate exponents where $1 \leq$ $h_{1}, \cdots, h_{r} \leq n+t$ and $\partial_{h}^{0}, 1 \leq h \leq n+t$, denotes the identity map on $\mathbb{F}\left[e^{ \pm[P]}, n, t\right]$. For any $\alpha_{u} \in P \subset P_{m}$, let $\mathfrak{A}_{\alpha_{u}}$ be an additive subgroup

[^0]of \mathbb{F} such that $\mathfrak{A}_{\alpha_{u}}$ contains \mathbb{Z}. Consider now the (free) \mathbb{F}-vector space $N\left(e^{\mathfrak{Z}_{P}}, n, t\right)_{k}$ (resp. $\left.N\left(e^{\mathfrak{A}_{P}}, n, t\right)_{k^{+}}\right)$whose basis is the set
\[

$$
\begin{align*}
& \mathbf{B}_{1}=\left\{e^{a_{1} f_{1}} \cdots e^{a_{r} f_{r}} x_{1}^{j_{1}} \cdots x_{n+t}^{j_{n+t}} \partial_{h_{1}}^{r_{1}} \cdots \partial_{h_{r}}^{r_{r}} \mid a_{1} \in \mathfrak{A}_{\alpha_{1}}, \cdots, a_{r} \in \mathfrak{A}_{\alpha_{r}},\right. \\
& \left.\quad f_{1}, \cdots, f_{r} \in P, h_{1}, \cdots, h_{r} \leq n+t, r_{1}+\cdots+r_{r} \leq k \in \mathbb{N} \quad\left(\text { resp. } \mathbb{N}^{+}\right)\right\} \tag{1}
\end{align*}
$$
\]

If we define the multiplication $*$ on $N\left(e^{\mathfrak{Z}_{P}}, n, t\right)_{k}$ as follows:

$$
\begin{equation*}
f \partial_{h_{1}}^{p_{1}} \cdots \partial_{h_{r}}^{p_{r}} * g \partial_{u_{1}}^{v_{1}} \cdots \partial_{u_{q}}^{v_{q}}=f\left(\partial_{h_{1}}^{p_{1}} \cdots \partial_{h_{r}}^{p_{r}}(g)\right) \partial_{u_{1}}^{v_{1}} \cdots \partial_{u_{q}}^{v_{q}} \tag{2}
\end{equation*}
$$

for any $f \partial_{h_{1}}^{p_{1}} \cdots \partial_{h_{r}}^{p_{r}}, g \partial_{u_{1}}^{v_{1}} \cdots \partial_{u_{q}}^{v_{q}} \in N\left(e^{\mathfrak{Z}_{P}}, n, t\right)_{k}$, then we define the combinatorial non-associative algebra $W N\left(e^{\mathfrak{A}_{P}}, n, t\right)_{k}$ whose underlying vector space is $N\left(e^{\mathfrak{Z}_{P}}, n, t\right)_{k}$ and whose multiplication is $*$ in (2) (see [1], [5], [13] and [14]). The non-associative subalgebra $W N\left(e^{\mathfrak{A}_{P}}, n, t\right)_{<k>}$ of the algebra $W N\left(e^{\mathfrak{A}_{P}}, n, t\right)_{k}$ is generated by
(3) $\left\{f \partial_{h_{1}}^{r_{1}} \cdots \partial_{h_{r}}^{r_{r}} \mid f \in \mathbf{B}, 1 \leq h_{1}, \cdots, h_{r} \leq n+t, r_{1}+\cdots+r_{r}=k \in \mathbb{N}^{+}\right\}$.

The non-associative subalgebra $W N\left(e^{\mathfrak{A}_{P}}, n, t\right)_{[k]}$ of the algebra $W N\left(e^{\mathfrak{A}_{P}}, n, t\right)_{k}$ is generated by

$$
\begin{equation*}
\left\{f \partial_{h}^{k} \mid f \in \mathbf{B}, 1 \leq h \leq n+t\right\} . \tag{4}
\end{equation*}
$$

For an algebra A and $l \in A$, an element $l_{1} \in A$ is a right (resp. left) identity of l, if $l * l_{1}=l$ (resp. $l_{1} * l=l$) holds. The set of all right identities of $W N\left(e^{\mathfrak{A}_{P}}, n, t\right)_{[1]}$ is $\left\{\sum_{1 \leq u \leq n+t} x_{u} \partial_{u}+\sum_{1 \leq u \leq n+t} c_{u} \partial_{u} \mid c_{u} \in \mathbb{F}\right\}$. There is no left identity of $W N\left(e^{\mathfrak{L}_{P}}, n, t\right)_{k^{+}}$. The algebra $W N\left(e^{\mathfrak{Z}_{P}}, n, t\right)_{k}$ has the left identity 1 . If A is an associative \mathbb{F}-algebra, then the antisymmetrized algebra of A is a Lie algebra relative to the commutator $[x, y]:=x y-y x$, (See [9]). For a general non-associative \mathbb{F}-algebra N we define in the same way its antisymmetrized algebra N^{-}. In case N^{-} is a Lie algebra we shall say that N is Lie admissible. For $S \subset N^{-}$, an element l is ad-diagonal with respect to S if for any $l_{1} \in S,\left[l, l_{1}\right]=c l_{1}$ for $c \in \mathbb{F}$. The algebra $W N\left(e^{\mathfrak{A}_{P}}, n, t\right)_{[1]}$ is Lie admissible (see [8] and [15]). Since the cardinality $|P|$ of P is 2^{m}, for all $\alpha \in P_{m}$, if \mathfrak{A}_{α} is \mathbb{Z}, then the algebra $W N\left(e^{\mathfrak{A}_{P_{m}}}, n, t\right)_{k}$ is $\mathbb{Z}^{2^{m}}$-graded as follows:

$$
\begin{equation*}
W N\left(e^{\mathfrak{A}_{P_{m}}}, n, t\right)_{k}=\bigoplus_{\left(a_{1}, \cdots, a_{m^{2}}\right)} N_{\left(a_{1}, \cdots, a_{m^{2}}\right)} \tag{5}
\end{equation*}
$$

where $N_{\left(a_{1}, \cdots, a_{2} m\right)}$ is the vector subspace of $W N\left(e^{\mathfrak{A} P_{m}}, n, t\right)_{k}$ spanned by

$$
\left\{e^{a_{1} f_{1}} \cdots e^{a_{r} f_{r}} x_{1}^{j_{1}} \cdots x_{n+t}^{j_{n+t}} \mid j_{1}, \cdots, j_{n} \in \mathbb{Z}, j_{n+1}, \cdots, j_{n+t} \in \mathbb{N}\right\} .
$$

This implies that $W N\left(e^{\mathfrak{A}_{P}}, n, t\right)_{k}$ and $W N\left(e^{\mathfrak{A}_{P}}, n, t\right)_{k^{+}}$are appropriate graded algebras as (5) (see [11]). Thus throughout the paper, the
$(0, \cdots, 0)$-homogeneous component N_{0} of $W N\left(e^{\mathfrak{A}_{P}}, n, t\right)_{k}$ is the subalgebra $W N(0, n, t)_{k}$ of $W N\left(e^{\mathfrak{A}_{P}}, n, t\right)_{k}$. For any standard basis element $e^{a_{1} f_{1}} \cdots e^{a_{r} f_{r}} x_{1}^{j_{1}} \cdots x_{n+t}^{j_{n+t}} \partial_{t_{1}}^{r_{1}} \cdots \partial_{t_{r}}^{r_{r}}$ of $W N\left(e^{\mathfrak{A}_{P_{m}}}, n, t\right)_{k}$, define the homogeneous degree as follows:

$$
h d\left(e^{a_{1} f_{1}} \cdots e^{a_{r} f_{r}} x_{1}^{j_{1}} \cdots x_{n+t}^{j_{n+t}} \partial_{t_{1}}^{r_{1}} \cdots \partial_{t_{r}}^{r_{r}}\right)=\sum_{u=1}^{n+t}\left|j_{u}\right|
$$

where $\left|j_{u}\right|$ is the absolute value of j_{u} for $1 \leq u \leq n+t$. For any element $l \in W N\left(e^{\mathfrak{A}_{P}}, n, t\right)_{k}$, define $h d(l)$ as the highest homogeneous degree of each monomial of l. Note that the set of all right annihilators of $W N\left(e^{\mathfrak{A}_{P}}, n, t\right)_{k}$ is the subalgebra T_{n+t} of $W N\left(e^{\mathfrak{A}_{P}}, n, t\right)_{k}$ which is spanned by $\left\{\partial_{t_{1}}^{r_{1}} \cdots \partial_{t_{r}}^{r_{r}} \mid 1 \leq t_{1}, \cdots, t_{r} \leq n+t, r_{1}+\cdots+r_{r} \leq k \in \mathbb{N}\right\}$. For a given algebra $A, \operatorname{Out}(A)$ (resp. $\operatorname{Inn}(A))$ is the set of all the outer (resp. inner) derivations of A and $\operatorname{Der}(A)$ is the set of all the derivations of A. An algebra A is purely outer, if every derivation of A is outer i.e., $\operatorname{Der}(A)=\operatorname{Out}(A)$. There are various papers on studying the derivations of a non-associative algebra and an anti-symmetrized algebra (see [1], $[2],[3],[5],[6],[7],[10],[12],[14])$. We find all the derivations of a growing algebra in section 2.

2. Derivations of the non-associative algebra $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}$

For this section, the set of all right annihilators T_{3} of

$$
W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}
$$

Note 1. For any basis elements $\partial_{u}, x_{1}^{i_{1}} x_{2}^{i_{2}} x_{3}^{i_{3}} \partial_{u}, e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i_{1}} x_{2}^{i_{2}} x_{3}^{i_{3}} \partial_{u}$, $r_{i} \geq 1,1 \leq u \leq 3$, of $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{1}$, and for any $c \in \mathbb{F}, p \in \mathbb{Z}$, if we define an \mathbb{F}-linear map D_{c} from the algebra $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{1}$ to itself as follows:

$$
\begin{align*}
& D_{c}\left(\partial_{u}\right)=0 \\
& D_{c}\left(x_{1}^{i_{1}} x_{2}^{i_{2}} x_{3}^{i_{3}} \partial_{u}\right)=0 \tag{6}\\
& D_{c}\left(e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i_{1}} x_{2}^{i_{2}} x_{3}^{i_{3}} \partial_{u}\right)=p c e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i_{1}} x_{2}^{i_{2}} x_{3}^{i_{3}} \partial_{u}
\end{align*}
$$

then the map D_{c} can be linearly extended to a non-associative algebra derivation of $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}($ see [4], [6], [8] and [10]).

Lemma 2.1. For any derivation D of $W N\left(e^{\left. \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}, 0,3\right)_{[1]} \text { and }}\right.$ for any basis elements $\partial_{u}, x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}, 1 \leq u \leq 3$, of $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}$, we have that

$$
\begin{aligned}
& D\left(\partial_{u}\right)=0 \\
& D\left(x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}\right)=i c_{0,0,0,1} x_{1}^{i-1} x_{2}^{j} x_{3}^{k} \partial_{u}+j d_{0,0,0,2} x_{1}^{i} x_{2}^{j-1} x_{3}^{k} \partial_{u} \\
& +k r_{0,0,0,3} x_{1}^{i} x_{2}^{j} x_{3}^{k-1} \partial_{u}
\end{aligned}
$$

hold with appropriate coefficients where $1 \leq u \leq 3$.

Proof. Let D be the derivation in the lemma. Since the algebra $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}$ is \mathbb{Z}-graded, $D\left(\partial_{1}\right)$ is the sum of terms in different homogeneous components of $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}$ in (5). So $D\left(\partial_{1}\right)$ can be written as follows:

$$
\begin{aligned}
D\left(\partial_{1}\right)= & \sum_{r_{1}, r_{2}, r_{3}, i, j, k \geq 0} \alpha_{r_{1}, r_{2}, r_{3}, i, j, k, 1} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{1} \\
& +\sum_{r_{1}, r_{2}, r_{3}, i, j, k \geq 0} \alpha_{r_{1}, r_{2}, r_{3}, i, j, k, 2} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{2} \\
& +\sum_{r_{1}, r_{2}, r_{3}, i, j, k \geq 0} \alpha_{r_{1}, r_{2}, r_{3}, i, j, k, 3} e^{p x_{1}^{r_{1}} x_{2}^{r_{2} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{3}}
\end{aligned}
$$

with appropriate coefficients. Since ∂_{1} centralizes itself, we have that $D\left(\partial_{1}\right)$ is in the right annihilator of ∂_{1}, i.e.,

$$
\begin{aligned}
& \partial_{1} * D\left(\partial_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i \geq 1, r_{1}, r_{2}, r_{3}, j, k \geq 0} i \alpha_{r_{1}, r_{2}, r_{3}, i, j, k, 1} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i-1} x_{2}^{j} x_{3}^{k} \partial_{1} \\
& +\sum_{r_{1}, r_{2}, r_{3}, i, j, k \geq 0} p r_{1} \alpha_{r_{1}, r_{2}, r_{3}, i, j, k, 2} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i+r_{1}} x_{2}^{j+r_{2}} x_{3}^{k+r_{3}} \partial_{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{r_{1}, r_{2}, r_{3}, i, j, k \geq 0} p r_{1} \alpha_{r_{1}, r_{2}, r_{3}, i, j, k, 3} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i+r_{1}} x_{2}^{j+r_{2}} x_{3}^{k+r_{3}} \partial_{3} \\
& +\sum_{i \geq 1, r_{1}, r_{2}, r_{3}, j, k \geq 0} i \alpha_{r_{1}, r_{2}, r_{3}, i, j, k, 3} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i-1} x_{2}^{j} x_{3}^{k} \partial_{3} \\
& =0
\end{aligned}
$$

with appropriate coefficients. By (7), we have that $\alpha_{r_{1}, r_{2}, r_{3}, i, j, k, 1}$, $\alpha_{r_{1}, r_{2}, r_{3}, i, j, k, 2}$, and $\alpha_{r_{1}, r_{2}, r_{3}, i, j, k, 3}$, are zeros, $r_{1}, r_{2}, r_{3}, i, j, k \geq 0$. Thus $D\left(\partial_{1}\right)$ is zero. Similarly we can prove that $D\left(\partial_{2}\right)$ and $D\left(\partial_{3}\right)$ are also zeros. Since ∂_{1} centralizes $x_{1} \partial_{1}$, we can also prove that

$$
D\left(x_{1} \partial_{1}\right)=c_{1} \partial_{1}+c_{2} \partial_{2}+c_{3} \partial_{3}
$$

Since $x_{1} \partial_{1}$ is an idempotent, we can prove that $c_{2}=0, c_{3}=0$. This implies that $D\left(x_{1} \partial_{1}\right)=c_{1} \partial_{1}$. Since $D\left(\partial_{1} * x_{1}^{2} \partial_{1}\right)=2 D\left(x_{1} \partial_{1}\right)$, we are also able to prove that

$$
\begin{aligned}
D\left(x_{1}^{2} \partial_{1}\right)= & 2 c_{1} x_{1} \partial_{1}+\sum_{j, k} t_{0, j, k, 1} x_{2}^{j} x_{3}^{k} \partial_{1} \\
& +\sum_{j, k} t_{0, j, k, 2} x_{2}^{j} x_{3}^{k} \partial_{2}+\sum_{j, k} t_{0, j, k, 3} x_{2}^{j} x_{3}^{k} \partial_{3}
\end{aligned}
$$

where $t_{0, j, k, 1}, t_{0, j, k, 2}, t_{0, j, k, 3} \in \mathbb{F}$ for all j and k. Since $D\left(x_{1} \partial_{1} * x_{1}^{2} \partial_{1}\right)=$ $2 D\left(x_{1}^{2} \partial_{1}\right)$, we have that $t_{0, j, k, 1}=t_{0, j, k, 2}=t_{0, j, k, 3}=0$ for all j and k. This implies that

$$
\begin{aligned}
& D\left(x_{1} \partial_{1}\right)=c_{1} \partial_{1} \\
& D\left(x_{1}^{2} \partial_{1}\right)=2 c_{1} x \partial_{1}
\end{aligned}
$$

hold. By $D\left(\partial_{1} * x_{1}^{3} \partial_{1}\right)=3 D\left(x_{1}^{2} \partial_{1}\right)$, we have that

$$
\begin{aligned}
D\left(x_{1}^{3} \partial_{1}\right) & =3 c_{1} x_{1}^{2} \partial_{1}+\sum_{j, k} s_{0, j, k, 1} x_{2}^{j} x_{3}^{k} \partial_{1} \\
& +\sum_{j, k} s_{0, j, k, 2} x_{2}^{j} x_{3}^{k} \partial_{2}+\sum_{j, k} s_{0, j, k, 3} x_{2}^{j} x_{3}^{k} \partial_{3},
\end{aligned}
$$

where $s_{0, j, k, 1}, s_{0, j, k, 2}, s_{0, j, k, 3} \in \mathbb{F}$ for all j and k. By $D\left(x_{1} \partial_{1} * x_{1}^{3} \partial_{1}\right)=$ $3 D\left(x_{1}^{3} \partial_{1}\right)$, we have that $s_{0, j, k, 1}=s_{0, j, k, 2}=s_{0, j, k, 3}=0$ for all j and k and $D\left(x_{1}^{3} \partial_{1}\right)=3 c_{1} x_{1}^{2} \partial_{1}$. Since $D\left(x_{1}^{2} \partial_{1} * x_{1}^{i-1} \partial_{1}\right)=(i-1) D\left(x_{1}^{i} \partial_{1}\right)$, by induction on i of $x_{1}^{i} \partial_{1}$, we are able to prove that

$$
D\left(x_{1}^{i} \partial_{1}\right)=i c_{1} x_{1}^{i-1} \partial_{1} .
$$

Similarly we are also able to prove that

$$
\begin{aligned}
& D\left(x_{2}^{j} \partial_{2}\right)=j d_{2} x_{2}^{j-1} \partial_{2} \\
& D\left(x_{3}^{k} \partial_{3}\right)=j h_{3} x_{3}^{j-1} \partial_{3} .
\end{aligned}
$$

Since $\partial_{u}, 1 \leq u \leq 3$, is in the left annihilator of $x_{1} \partial_{2}$, we can prove that $D\left(x_{1} \partial_{2}\right)=\alpha_{1} \partial_{1}+\alpha_{2} \partial_{2}+\alpha_{3} \partial_{3}$. By $D\left(x_{1} \partial_{1} * x_{1} \partial_{2}\right)=D\left(x_{1} \partial_{2}\right)$, we can also prove that $\alpha_{1}=\alpha_{3}=0, \alpha_{2}=c_{1}$. This implies that $D\left(x_{1} \partial_{2}\right)=c_{1} \partial_{2}$. Since $D\left(x_{1}^{2} \partial_{1} * x_{1}^{i-1} \partial_{2}\right)=(i-1) D\left(x_{1}^{i} \partial_{2}\right)$, by induction on i of $x_{1}^{i} \partial_{2}$, we can prove that

$$
D\left(x_{1}^{i} \partial_{2}\right)=i c_{1} x_{1}^{i-1} \partial_{2}
$$

Similarly we are able to prove that

$$
\begin{aligned}
& D\left(x_{1}^{i} \partial_{3}\right)=i c_{1} x_{1}^{i-1} \partial_{3}, \\
& D\left(x_{2}^{j} \partial_{u}\right)=j d_{2} x_{2}^{j-1} \partial_{u}, \\
& D\left(x_{3}^{k} \partial_{u}\right)=k h_{3} x_{3}^{k-1} \partial_{u}
\end{aligned}
$$

where $1 \leq u \leq 3$. By $D\left(x_{1}^{i} \partial_{2} * x_{2}^{j+1} \partial_{u}\right)=(j+1) D\left(x_{1}^{i} x_{2}^{j} \partial_{u}\right)$, we have that

$$
D\left(x_{1}^{i} x_{2}^{j} \partial_{u}\right)=i c_{1} x_{1}^{i-1} x_{2}^{j} \partial_{u}+j d_{2} x_{1}^{i} x_{2}^{j-1} \partial_{u}
$$

where $1 \leq u \leq 3$. Since $D\left(x_{1}^{i} x_{2}^{j} \partial_{3} * x_{3}^{k+1} \partial_{u}\right)=(k+1) D\left(x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}\right)$, we are also able to prove that

$$
D\left(x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}\right)=i c_{1} x_{1}^{i-1} x_{2}^{j} x_{3}^{k} \partial_{u}+j d_{2} x_{1}^{i} x_{2}^{j-1} x_{3}^{k} \partial_{u}+k h_{3} x_{1}^{i} x_{2}^{j} x_{3}^{k-1} \partial_{u}
$$

where $1 \leq u \leq 3$. So we have proven the lemma.

Lemma 2.2. For any derivation D of the algebra
 $1 \leq u \leq 3$, of $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}$, we have that

$$
\begin{aligned}
& D\left(x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}\right)=0, \\
& D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{u}\right)=c_{r_{1}, r_{2}, r_{3}} e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{u},
\end{aligned}
$$

hold where $c \in \mathbb{F}$.
Proof. Let D be the derivation in the lemma. Since the algebra $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}$ is \mathbb{Z}-graded, $D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{1}\right)$ is the sum of terms in different homogeneous components of $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}$ in (5). Assume that

$$
\begin{aligned}
D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{1}\right) & =\sum_{r_{1}, r_{2}, r_{3}, i, j, k \geq 0} a_{r_{1}, r_{2}, r_{3}, i, j, k, 1} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{1} \\
& +\sum_{r_{1}, r_{2}, r_{3}, i, j, k \geq 0} a_{r_{1}, r_{2}, r_{3}, i, j, k, 2} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{2} \\
& +\sum_{r_{1}, r_{2}, r_{3}, i, j, k \geq 0} a_{r_{1}, r_{2}, r_{3}, i, j, k, 3} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{3}
\end{aligned}
$$

with appropriate coefficients. We have that

$$
\begin{align*}
& D\left(\partial_{1} * e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{1}\right)=r_{1} D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{r_{1}-1} x_{2}^{r_{2}} x_{3}^{r_{3}} \partial_{1}\right) \\
& \quad=\sum_{r_{1}, r_{2}, r_{3}, i, j, k \geq 0} p r_{1} a_{r_{1}, r_{2}, r_{3}, i, j, k, 1} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{r_{1}+i-1} x_{2}^{r_{2}+j} x_{3}^{r_{3}+k} \partial_{1} \\
& \quad+\sum_{i \geq 1, r_{1}, r_{2}, r_{3}, j, k \geq 0} i a_{r_{1}, r_{2}, r_{3}, i, j, k, 1} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i-1} x_{2}^{j} x_{3}^{k} \partial_{1} \\
& \quad+\sum_{r_{1}, r_{2}, r_{3}, i, j, k \geq 0} p r_{1} a_{r_{1}, r_{2}, r_{3}, i, j, k, 2} e^{p x_{1}^{r_{1}} x_{2}^{r_{2} 2} x_{3}^{r_{3}}} x_{1}^{r_{1}+i-1} x_{2}^{r_{2}+j} x_{3}^{r_{3}+k} \partial_{2} \tag{8}\\
& \quad+\sum_{i \geq 1, r_{1}, r_{2}, r_{3}, j, k \geq 0} i a_{r_{1}, r_{2}, r_{3}, i, j, k, 2} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}} x_{1}^{i-1} x_{2}^{j} x_{3}^{k} \partial_{2}} \quad+\sum_{r_{1}, r_{2}, r_{3}, i, j, j, k \geq 0} p r_{1} a_{r_{1}, r_{2}, r_{3}, i, j, k, 3} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{r_{1}+i-1} x_{2}^{r_{2}+j} x_{3}^{r_{3}+k} \partial_{3} \\
& \quad i a_{r_{1}, r_{2}, r_{3}, i, j, k, 3} e^{p x_{1}^{r_{1}} x_{2}^{r_{2} x_{3}, j, j, k \geq} x_{3}^{r_{3}}} x_{1}^{i-1} x_{2}^{j} x_{3}^{k} \partial_{3}
\end{align*}
$$

and

$$
\begin{aligned}
& D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{1} * x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}} \partial_{1}\right)=r_{1} D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{r_{1}-1} x_{2}^{r_{2}} x_{3}^{r_{3}} \partial_{1}\right) \\
& =D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{1}\right) * x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}} \partial_{1}+e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{1} * D\left(x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}} \partial_{1}\right) \\
& =r_{1} \sum_{r_{1}, r_{2}, r_{3}, i, j, k \geq 0} a_{i, j, k, 1} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i+r_{1}-1} x_{2}^{j+r_{2}} x_{3}^{k+r_{3}} \partial_{1} \\
& +r_{2} \sum_{r_{1}, r_{2}, r_{3}, i, j, k \geq 0} a_{r_{1}, r_{2}, r_{3}, i, j, k, 2} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i+r_{1}} x_{2}^{j+r_{2}-1} x_{3}^{k+r_{3}} \partial_{1} \\
& +r_{3} \sum_{r_{1}, r_{2}, r_{3}, i, j, k \geq 0} a_{r_{1}, r_{2}, r_{3}, i, j, k, 3} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i+r_{1}} x_{2}^{j+r_{2}} x_{3}^{k+r_{3}-1} \partial_{1} \\
& +\left(r_{1}-1\right) r_{1} c_{1} e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{r_{1}-2} x_{2}^{r_{2}} x_{3}^{r_{3}} \partial_{1}
\end{aligned}
$$

$$
\begin{aligned}
& +r_{1} r_{3} h_{3} e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}} x_{1}^{r_{1}-1} x_{2}^{r_{2}} x_{3}^{r_{3}-1} \partial_{1} .}
\end{aligned}
$$

By comparing (8) and (9), we have that

$$
\begin{aligned}
& p=1 \\
& a_{r_{1}, r_{2}, r_{3}, i, j, k, 2}=a_{r_{1}, r_{2}, r_{3}, i, j, k, 3}=0, r_{1}, r_{2}, r_{3}, i, j, k \geq 0, \\
& a_{r_{1}, r_{2}, r_{3}, i, j, k, 1}=0, i \geq 1, \text { and } \\
& c_{1}=d_{2}=h_{3}=0
\end{aligned}
$$

This implies that

$$
\begin{equation*}
D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{1}\right)=\sum_{r_{1}, r_{2}, r_{3}, j, k \geq 0} a_{r_{1}, r_{2}, r_{3}, 0, j, k, 1} e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{2}^{j} x_{3}^{k} \partial_{1} \tag{10}
\end{equation*}
$$

and we also have

$$
D\left(x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}\right)=0
$$

where $1 \leq u \leq 3$. Similarly we can prove that

$$
\begin{equation*}
D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{u}\right)=\sum_{r_{1}, r_{2}, r_{3}, j, k \geq 0} a_{r_{1}, r_{2}, r_{3}, 0, j, k, 1} e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{2}^{j} x_{3}^{k} \partial_{u} \tag{11}
\end{equation*}
$$

where $2 \leq u \leq 3$. Since

$$
\begin{aligned}
& D\left(\partial_{2} * e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{1}\right)=r_{2} D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{r_{1}} x_{2}^{r_{2}-1} x_{3}^{r_{3}} \partial_{1}\right) \\
& =r_{2} \sum_{r_{1}, r_{2}, r_{3}, j, k \geq 0} a_{r_{1}, r_{2}, r_{3}, 0, j, k, 1} e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{r_{1}} x_{2}^{r_{2}+j-1} x_{3}^{r_{3}+k} \partial_{1} \\
& +\sum_{j \geq 1, r_{1}, r_{2}, r_{3}, k \geq 0} j a_{r_{1}, r_{2}, r_{3}, 0, j, k, 1} e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{2}^{j-1} x_{3}^{k} \partial_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{2} * x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}} \partial_{1}\right)=r_{2} D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{r_{1}} x_{2}^{r_{2}-1} x_{3}^{r_{3}} \partial_{1}\right) \\
& =r_{2} \sum_{r_{1}, r_{2}, r_{3}, j, k \geq 0} a_{0, j, k, 1} e^{x_{1}^{r_{1}} x_{!}^{r_{1}} x_{2}^{r_{2}+j-1} x_{3}^{r_{3}+k} \partial_{1},}
\end{aligned}
$$

we have that $a_{r_{1}, r_{2}, r_{3}, 0, j, k, 1}=0, j \geq 1$. This implies that

$$
\begin{equation*}
D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{1}\right)=\sum_{r_{1}, r_{2}, r_{3}, k \geq 0} a_{r_{1}, r_{2}, r_{3}, 0,0, k, 1} e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{3}^{k} \partial_{1} \tag{12}
\end{equation*}
$$

Similarly we can prove that

$$
\begin{equation*}
D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{u}\right)=\sum_{r_{1}, r_{2}, r_{3}, k \geq 0} a_{r_{1}, r_{2}, r_{3}, 0,0, k, 1} e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{3}^{k} \partial_{u} \tag{13}
\end{equation*}
$$

where $2 \leq u \leq 3$. Since

$$
\begin{aligned}
& D\left(\partial_{3} * e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{1}\right)=r_{3} D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}-1} \partial_{1}\right) \\
& =\sum_{r_{1}, r_{2}, r_{3}, k \geq 0} a_{r_{1}, r_{2}, r_{3}, 0,0, k, 1} e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}+k-1} \partial_{1} \\
& +\sum_{r_{1}, r_{2}, r_{3} \geq 0, k \geq 1} k a_{r_{1}, r_{2}, r_{3}, 0,0, k, 1} e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{3}^{k-1} \partial_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{3} * x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}} \partial_{1}\right)=r_{3} D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}-1} \partial_{1}\right) \\
& =\sum_{r_{1}, r_{2}, r_{3}, k \geq 0} r_{3} a_{r_{1}, r_{2}, r_{3}, 0,0, k, 1} e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}+k-1} \partial_{1} .
\end{aligned}
$$

Thus we have that $a_{r_{1}, r_{2}, r_{3}, 0,0, k, 1}=0, k \geq 1$. This implies that

$$
\begin{equation*}
D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{1}\right)=a_{r_{1}, r_{2}, r_{3}, 0,0,0,1} e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{1} \tag{14}
\end{equation*}
$$

By (14) and $D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{1} * x_{1} \partial_{u}\right)=D\left(e^{\left.x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}} \partial_{u}\right) \text {, we can prove }}\right.$ that

$$
D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{u}\right)=a_{r_{1}, r_{2}, r_{3}, 0,0,0,1} e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{u}
$$

where $2 \leq u \leq 3$. Putting $c_{r_{1}, r_{2}, r_{3}}=a_{r_{1}, r_{2}, r_{3}, 0,0,0,1}$, we have that $D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{u}\right)=c_{r_{1}, r_{2}, r_{3}} e^{x_{1}^{1}} x_{2}^{r_{2}} x_{3}^{r_{3}} \partial_{u}$. Therefore we have proven the lemma.

Theorem 2.3. For any derivation D of the algebra $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}$ and for basis elements
$e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}, 1 \leq u \leq 3$, of $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}$, we have that

$$
D\left(e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}\right)=p c_{r_{1}, r_{2}, r_{3}} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}
$$

hold where $p \in \mathbb{Z}$ and $c \in \mathbb{F}$.
Proof. Let D be the derivation in the lemma.
By $D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{1}\right.$
 $D\left(e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}\right)=c_{r_{1}, r_{2}, r_{3}} x^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}$ for $1 \leq u \leq 3$, with appropriate coefficients. By
$D\left(e^{r_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i-r_{1}+1} x_{2}^{j-r_{2}} x_{3}^{k-r_{3}} \partial_{1} * e^{x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{u}\right)=r_{1} D\left(e^{2 x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}\right)$,
we prove that

$$
D\left(e^{2 x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}\right)=2 c_{r_{1}, r_{2}, r_{3}} e^{2 x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u} .
$$

By induction on $p \in \mathbb{Z}$ of $e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}$ and
$D\left(e^{(p-1) x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i-r_{1}+1} x_{2}^{j-r_{2}} x_{3}^{k-r_{3}} \partial_{1} * e^{r_{1}^{1} x_{2}^{r_{2}} x_{3}^{r_{3}}} \partial_{u}\right)=r_{1} D\left(e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}\right)$,
we are able to prove that

$$
D\left(e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}\right)=p c_{r_{1}, r_{2}, r_{3}} e^{p x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}} x_{1}^{i} x_{2}^{j} x_{3}^{k} \partial_{u}
$$

Therefore the proof is completed.
Theorem 2.4. For any $D \in \operatorname{Der}_{n o n}\left(W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}\right), D$ is the linear sum of the derivations D_{c} as shown in Note 1 where $c \in \mathbb{F}$. Every derivation of the algebra $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}$ is outer.

Proof. The proofs of the theorem are straightforward by Lemma 2.2, Theorem 2.3, and the fact that the derivation of Note 1 cannot be inner. This completes the proof of the theorem.

Corollary 2.5. The dimension of $\operatorname{Der}_{\text {non }}\left(W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}\right)$ of the algebra $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}$ is one. For any derivation D of $\operatorname{Der}_{\text {non }}\left(W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}\right), D(\mathfrak{A})=0$ holds where \mathfrak{A} is the zerohomogeneous component of $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}$ in (5) (see [9]).

Proof. The proofs of the corollary are straightforward by Lemma 2.2 and Note 1.

Proposition 2.6. If A is not a purely outer algebra, then algebra A and $W N\left(e^{ \pm x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}}, 0,3\right)_{[1]}$ are not isomorphic.

Proof. The proof of the proposition is straightforward by Theorem 2.4.

References

[1] Seul Hee Choi and Ki-Bong Nam, The Derivation of a Restricted Weyl Type Non-Associative Algebra, Hadronic Journal, 28(3), (2005), 287-295.
[2] Seul Hee Choi, A growing algebra containing the polynomial ring, Honam Mathematical Journal, 32(3), (2010), 467-480.
[3] Seul Hee Choi, An algebra with right identities and its antisymmetrized algebra, Honam Mathematical Journal, 29(2), (2007), 213-222.
[4] Seul Hee Choi, New algebras using additive abelian groups I, Honam Mathematical Journal, 31(3), (2009), 407-419.
[5] Seul Hee Choi and Ki-Bong Nam, Weyl type non-associative algebra using additive groups I, Algebra Colloquium, 14(3) (2007), 479-488.
[6] Seul Hee Choi and Ki-Bong Nam, Derivations of a restricted Weyl Type Algebra I, Rocky Mountain Math. Journals, 37(6), (2007), 67-84.
[7] Seul Hee Choi, Hong Goo Park, Moon-Ok Wang, and Ki-Bong Nam, Combinatorial algebra and its antisymmetrized algebra I, Algebra Colloquium, 22(1), (2015), 823-834.
[8] Seul Hee Choi, Jongwoo Lee, and Ki-Bong Nam, Derivations of a restricted Weyl type algebra containing the polynomial ring, Communication in Algebra, 36(9), (2008), 3435-3446.
[9] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, (1987), 7-21.
[10] T. Ikeda, N. Kawamoto and Ki-Bong Nam, A class of simple subalgebras of Generalized W algebras, Proceedings of the International Conference in 1998 at Pusan (Eds. A. C. Kim), Walter de Gruyter Gmbh Co. KG, (2000), 189-202.
[11] V. G. Kac, Description of the filtered Lie algebras with which graded Lie algebras of Cartan type are associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom, 38, (1974), 832-834.
[12] Jongwoo Lee and Ki-bong Nam, Non-Associative Algebras containing the Matrix Ring, Linear Algebra and its Applications 429(1), (2008), Pages 72-78.
[13] Ki-Bong Nam, Generalized W and H Type Lie Algebras, Algebra Colloquium 6(3), (1999), 329-340.
[14] Ki-Bong Nam, On Some Non-Associative Algebras Using Additive Groups, Southeast Asian Bulletin of Mathematics, 27, Springer Verlag, (2003), 493-500.
[15] R. D. Schafer, Introduction to nonassociative algebras, Dover, (1995), 128-138.

Seul Hee Choi
Department of Mathematics, Jeonju University, Jeonju, Jeonbuk 55069, Korea.
E-mail: chois@jj.ac.kr

[^0]: Received October 17, 2017. Revised May 1, 2018. Accepted May 12, 2018.
 2010 Mathematics Subject Classification. 17B40, 17B56.
 Key words and phrases. outer, non-associative algebra, derivation.

