Honam Mathematical J. ${\bf 40}$ (2018), No. 2, pp. 227–237 http://dx.doi.org/10.5831/HMJ.2018.40.2.227

DERIVATIONS OF A NON-ASSOCIATIVE GROWING ALGEBRA

SEUL HEE CHOI

Abstract. There are various papers on finding all the derivations of a non-associative algebra and an anti-symmetrized algebra. We find all the derivations of a growing algebra in the paper. The dimension of derivations of the growing algebra is one and every derivation of the growing algebra is outer. We show that there is a class of purely outer algebras in this work.

1. Introduction

Let \mathbb{N} be the set of all non-negative integers and \mathbb{Z} be the set of all integers. Let \mathbb{N}^+ be the set of all positive integers. Let \mathbb{F} be a field of characteristic zero and \mathbb{F}^{\bullet} the set of all non-zero elements in \mathbb{F} . Throughout the paper, we will assume that e is not the element of the field \mathbb{F} . For $n, t \in \mathbb{N}$, throughout the paper, m denotes a non-negative integer such that $m \leq n+t$. For fixed integers, i_1, \cdots, i_m and for given irreducible polynomials $f_1, \cdots, f_m \in \mathbb{F}[x_1, \cdots, x_{n+t}]$, define $[f_1^{i_1}, \cdots, f_m^{i_m}]$ as the set $Poly_m = P_m = \{f_1^{i_1} \cdots f_m^{i_m}, f_1^{i_1} \cdots f_{m-1}^{i_{m-1}}, \cdots, f_2^{i_2} \cdots f_m^{i_m}, \cdots, f_1^{i_1}, \cdots, f_m^{i_m}\}$. For any subset P of P_m , define the \mathbb{F} -algebra $\mathbb{F}[e^{\pm [P]}, n, t] := \mathbb{F}[e^{\pm [P]}, x_1^{\pm 1}, \cdots, x_n^{\pm 1}, x_{n+1}, \cdots, x_{n+t}]$, which is spanned by

$$\mathbf{B} = \{ e^{a_1 f_1} \cdots e^{a_r f_r} x_1^{j_1} \cdots x_{n+t}^{j_{n+t}} | f_1, \cdots, f_r \in P, a_1, \cdots, a_r \in \mathbb{Z}, \\ j_1, \cdots, j_n \in \mathbb{Z}, j_{n+1}, \cdots, j_{n+t} \in \mathbb{N} \}$$

We then denote $\partial_{h_1}^{r_1} \cdots \partial_{h_r}^{r_r}$ by the composition of the partial derivatives $\partial_{h_1}, \cdots, \partial_{h_r}$ on $\mathbb{F}[e^{\pm [P]}, n, t]$ with appropriate exponents where $1 \leq h_1, \cdots, h_r \leq n+t$ and $\partial_h^0, 1 \leq h \leq n+t$, denotes the identity map on $\mathbb{F}[e^{\pm [P]}, n, t]$. For any $\alpha_u \in P \subset P_m$, let \mathfrak{A}_{α_u} be an additive subgroup

Received October 17, 2017. Revised May 1, 2018. Accepted May 12, 2018.

²⁰¹⁰ Mathematics Subject Classification. $17B40,\,17B56.$

Key words and phrases. outer, non-associative algebra, derivation.

of \mathbb{F} such that \mathfrak{A}_{α_u} contains \mathbb{Z} . Consider now the (free) \mathbb{F} -vector space $N(e^{\mathfrak{A}_P}, n, t)_k$ (resp. $N(e^{\mathfrak{A}_P}, n, t)_{k^+}$) whose basis is the set

(1)
$$\mathbf{B}_{1} = \{e^{a_{1}f_{1}} \cdots e^{a_{r}f_{r}} x_{1}^{j_{1}} \cdots x_{n+t}^{j_{n+t}} \partial_{h_{1}}^{r_{1}} \cdots \partial_{h_{r}}^{r_{r}} | a_{1} \in \mathfrak{A}_{\alpha_{1}}, \cdots, a_{r} \in \mathfrak{A}_{\alpha_{r}}, \\ f_{1}, \cdots, f_{r} \in P, h_{1}, \cdots, h_{r} \leq n+t, r_{1}+\cdots+r_{r} \leq k \in \mathbb{N} \quad (\text{ resp. } \mathbb{N}^{+})\}$$

If we define the multiplication * on $N(e^{\mathfrak{A}_P}, n, t)_k$ as follows:

(2)
$$f\partial_{h_1}^{p_1}\cdots\partial_{h_r}^{p_r}*g\partial_{u_1}^{v_1}\cdots\partial_{u_q}^{v_q}=f(\partial_{h_1}^{p_1}\cdots\partial_{h_r}^{p_r}(g))\partial_{u_1}^{v_1}\cdots\partial_{u_q}^{v_q}$$

for any $f\partial_{h_1}^{p_1}\cdots\partial_{h_r}^{p_r}, g\partial_{u_1}^{v_1}\cdots\partial_{u_q}^{v_q} \in N(e^{\mathfrak{A}_P}, n, t)_k$, then we define the combinatorial non-associative algebra $WN(e^{\mathfrak{A}_P}, n, t)_k$ whose underlying vector space is $N(e^{\mathfrak{A}_P}, n, t)_k$ and whose multiplication is * in (2) (see [1], [5], [13] and [14]). The non-associative subalgebra $WN(e^{\mathfrak{A}_P}, n, t)_{<k>}$ of the algebra $WN(e^{\mathfrak{A}_P}, n, t)_k$ is generated by

(3)
$$\{f\partial_{h_1}^{r_1}\cdots\partial_{h_r}^{r_r}| f \in \mathbf{B}, 1 \le h_1, \cdots, h_r \le n+t, r_1+\cdots+r_r=k \in \mathbb{N}^+\}.$$

The non-associative subalgebra $WN(e^{\mathfrak{A}_P}, n, t)_{[k]}$ of the algebra $WN(e^{\mathfrak{A}_P}, n, t)_k$ is generated by

(4)
$$\{f\partial_h^k | f \in \mathbf{B}, 1 \le h \le n+t\}.$$

For an algebra A and $l \in A$, an element $l_1 \in A$ is a right (resp. left) identity of l, if $l * l_1 = l$ (resp. $l_1 * l = l$) holds. The set of all right identities of $WN(e^{\mathfrak{A}_P}, n, t)_{[1]}$ is $\{\sum_{1 \leq u \leq n+t} x_u \partial_u + \sum_{1 \leq u \leq n+t} c_u \partial_u | c_u \in \mathbb{F}\}$. There is no left identity of $WN(e^{\mathfrak{A}_P}, n, t)_{k^+}$. The algebra $WN(e^{\mathfrak{A}_P}, n, t)_k$ has the left identity 1. If A is an associative \mathbb{F} -algebra, then the antisymmetrized algebra of A is a Lie algebra relative to the commutator [x, y] := xy - yx, (See [9]). For a general non-associative \mathbb{F} -algebra Nwe define in the same way its antisymmetrized algebra N^- . In case $N^$ is a Lie algebra we shall say that N is Lie admissible. For $S \subset N^-$, an element l is ad-diagonal with respect to S if for any $l_1 \in S$, $[l, l_1] = cl_1$ for $c \in \mathbb{F}$. The algebra $WN(e^{\mathfrak{A}_P}, n, t)_{[1]}$ is Lie admissible (see [8] and [15]). Since the cardinality |P| of P is 2^m , for all $\alpha \in P_m$, if \mathfrak{A}_{α} is \mathbb{Z} , then the algebra $WN(e^{\mathfrak{A}_{Pm}}, n, t)_k$ is \mathbb{Z}^{2^m} -graded as follows:

(5)
$$WN(e^{\mathfrak{A}_{P_m}}, n, t)_k = \bigoplus_{(a_1, \cdots, a_m^2)} N_{(a_1, \cdots, a_m^2)}$$

where $N_{(a_1,\dots,a_{2m})}$ is the vector subspace of $WN(e^{\mathfrak{A}_{P_m}},n,t)_k$ spanned by

$$\{e^{a_1f_1}\cdots e^{a_rf_r}x_1^{j_1}\cdots x_{n+t}^{j_{n+t}}|j_1,\cdots,j_n\in\mathbb{Z}, j_{n+1},\cdots,j_{n+t}\in\mathbb{N}\}.$$

This implies that $WN(e^{\mathfrak{A}_P}, n, t)_k$ and $WN(e^{\mathfrak{A}_P}, n, t)_{k^+}$ are appropriate graded algebras as (5) (see [11]). Thus throughout the paper, the

 $(0, \dots, 0)$ -homogeneous component N_0 of $WN(e^{\mathfrak{A}_P}, n, t)_k$ is the subalgebra $WN(0, n, t)_k$ of $WN(e^{\mathfrak{A}_P}, n, t)_k$. For any standard basis element $e^{a_1f_1} \cdots e^{a_rf_r} x_1^{j_1} \cdots x_{n+t}^{j_{n+t}} \partial_{t_1}^{r_1} \cdots \partial_{t_r}^{r_r}$ of $WN(e^{\mathfrak{A}_{P_m}}, n, t)_k$, define the homogeneous degree as follows:

$$hd(e^{a_1f_1}\cdots e^{a_rf_r}x_1^{j_1}\cdots x_{n+t}^{j_{n+t}}\partial_{t_1}^{r_1}\cdots \partial_{t_r}^{r_r}) = \sum_{u=1}^{n+t} |j_u|$$

where $|j_u|$ is the absolute value of j_u for $1 \leq u \leq n+t$. For any element $l \in WN(e^{\mathfrak{A}_P}, n, t)_k$, define hd(l) as the highest homogeneous degree of each monomial of l. Note that the set of all right annihilators of $WN(e^{\mathfrak{A}_P}, n, t)_k$ is the subalgebra T_{n+t} of $WN(e^{\mathfrak{A}_P}, n, t)_k$ which is spanned by $\{\partial_{t_1}^{r_1} \cdots \partial_{t_r}^{r_r} | 1 \leq t_1, \cdots, t_r \leq n+t, r_1 + \cdots + r_r \leq k \in \mathbb{N}\}$. For a given algebra A, Out(A) (resp. Inn(A)) is the set of all the outer (resp. inner) derivations of A and Der(A) is the set of all the derivations of A. An algebra A is purely outer, if every derivation of A is outer i.e., Der(A) = Out(A). There are various papers on studying the derivations of a non-associative algebra and an anti-symmetrized algebra (see [1], [2], [3], [5], [6], [7], [10], [12], [14]). We find all the derivations of a growing algebra in section 2.

2. Derivations of the non-associative algebra $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$

For this section, the set of all right annihilators T_3 of

$$WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$$

is spanned by $\{\partial_1, \partial_2, \partial_3\}$. The algebra $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$ is Z-graded (see [5]). The algebra $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$ and the Lie algebra $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$ are simple (see [3] and [11]).

Note 1. For any basis elements ∂_u , $x_1^{i_1} x_2^{i_2} x_3^{i_3} \partial_u$, $e^{px_1^{r_1} x_2^{r_2} x_3^{r_3}} x_1^{i_1} x_2^{i_2} x_3^{i_3} \partial_u$, $r_i \ge 1, 1 \le u \le 3$, of $WN(e^{\pm x_1^{r_1} x_2^{r_2} x_3^{r_3}}, 0, 3)_1$, and for any $c \in \mathbb{F}, p \in \mathbb{Z}$, if we define an \mathbb{F} -linear map D_c from the algebra $WN(e^{\pm x_1^{r_1} x_2^{r_2} x_3^{r_3}}, 0, 3)_1$ to itself as follows:

$$D_{c}(\partial_{u}) = 0,$$
(6)
$$D_{c}(x_{1}^{i_{1}}x_{2}^{i_{2}}x_{3}^{i_{3}}\partial_{u}) = 0,$$

$$D_{c}(e^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}x_{1}^{i_{1}}x_{2}^{i_{2}}x_{3}^{i_{3}}\partial_{u}) = pce^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}x_{1}^{i_{1}}x_{2}^{i_{2}}x_{3}^{i_{3}}\partial_{u}$$

then the map D_c can be linearly extended to a non-associative algebra derivation of $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$ (see [4], [6], [8] and [10]). \Box

Lemma 2.1. For any derivation D of $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$ and

for any basis elements ∂_u , $x_1^i x_2^j x_3^k \partial_u$, $1 \le u \le 3$, of $WN(e^{\pm x_1^{r_1} x_2^{r_2} x_3^{r_3}}, 0, 3)_{[1]}$, we have that

$$D(\partial_u) = 0,$$

$$D(x_1^i x_2^j x_3^k \partial_u) = ic_{0,0,0,1} x_1^{i-1} x_2^j x_3^k \partial_u + jd_{0,0,0,2} x_1^i x_2^{j-1} x_3^k \partial_u + kr_{0,0,0,3} x_1^i x_2^j x_3^{k-1} \partial_u$$

hold with appropriate coefficients where $1 \le u \le 3$.

Proof. Let D be the derivation in the lemma. Since the algebra $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$ is \mathbb{Z} -graded, $D(\partial_1)$ is the sum of terms in different homogeneous components of $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$ in (5). So $D(\partial_1)$ can be written as follows:

$$D(\partial_1) = \sum_{r_1, r_2, r_3, i, j, k \ge 0} \alpha_{r_1, r_2, r_3, i, j, k, 1} e^{px_1^{r_1}x_2^{r_2}x_3^{r_3}} x_1^i x_2^j x_3^k \partial_1 + \sum_{r_1, r_2, r_3, i, j, k \ge 0} \alpha_{r_1, r_2, r_3, i, j, k, 2} e^{px_1^{r_1}x_2^{r_2}x_3^{r_3}} x_1^i x_2^j x_3^k \partial_2 + \sum_{r_1, r_2, r_3, i, j, k \ge 0} \alpha_{r_1, r_2, r_3, i, j, k, 3} e^{px_1^{r_1}x_2^{r_2}x_3^{r_3}} x_1^i x_2^j x_3^k \partial_3$$

with appropriate coefficients. Since ∂_1 centralizes itself, we have that $D(\partial_1)$ is in the right annihilator of ∂_1 , i.e.,

$$\begin{aligned} \partial_{1}*D(\partial_{1}) &= \sum_{r_{1},r_{2},r_{3},i,j,k\geq 0} pr_{1}\alpha_{r_{1},r_{2},r_{3},i,j,k,1} e^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}x_{1}^{i+r_{1}-1}x_{2}^{j+r_{2}}x_{3}^{k+r_{3}}\partial_{1} \\ &+ \sum_{i\geq 1,r_{1},r_{2},r_{3},j,k\geq 0} i\alpha_{r_{1},r_{2},r_{3},i,j,k,1} e^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}x_{1}^{i-1}x_{2}^{j}x_{3}^{k}\partial_{1} \\ &+ \sum_{r_{1},r_{2},r_{3},i,j,k\geq 0} pr_{1}\alpha_{r_{1},r_{2},r_{3},i,j,k,2} e^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}x_{1}^{i-1}x_{2}^{j}x_{3}^{k}\partial_{2} \\ &+ \sum_{i\geq 1,r_{1},r_{2},r_{3},j,k\geq 0} i\alpha_{r_{1},r_{2},r_{3},i,j,k,3} e^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}x_{1}^{i-1}x_{2}^{j}x_{3}^{k}\partial_{2} \\ &+ \sum_{r_{1},r_{2},r_{3},i,j,k\geq 0} pr_{1}\alpha_{r_{1},r_{2},r_{3},i,j,k,3} e^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}x_{1}^{i-1}x_{2}^{j}x_{3}^{k}\partial_{3} \\ &+ \sum_{i\geq 1,r_{1},r_{2},r_{3},j,k\geq 0} i\alpha_{r_{1},r_{2},r_{3},i,j,k,3} e^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}x_{1}^{i-1}x_{2}^{j}x_{3}^{k}\partial_{3} \\ &= 0 \end{aligned}$$

with appropriate coefficients. By (7), we have that $\alpha_{r_1,r_2,r_3,i,j,k,1}$, $\alpha_{r_1,r_2,r_3,i,j,k,2}$, and $\alpha_{r_1,r_2,r_3,i,j,k,3}$, are zeros, $r_1, r_2, r_3, i, j, k \ge 0$. Thus $D(\partial_1)$ is zero. Similarly we can prove that $D(\partial_2)$ and $D(\partial_3)$ are also zeros. Since ∂_1 centralizes $x_1\partial_1$, we can also prove that

$$D(x_1\partial_1) = c_1\partial_1 + c_2\partial_2 + c_3\partial_3.$$

Since $x_1\partial_1$ is an idempotent, we can prove that $c_2 = 0$, $c_3 = 0$. This implies that $D(x_1\partial_1) = c_1\partial_1$. Since $D(\partial_1 * x_1^2\partial_1) = 2D(x_1\partial_1)$, we are also able to prove that

$$D(x_1^2 \partial_1) = 2c_1 x_1 \partial_1 + \sum_{j,k} t_{0,j,k,1} x_2^j x_3^k \partial_1 + \sum_{j,k} t_{0,j,k,2} x_2^j x_3^k \partial_2 + \sum_{j,k} t_{0,j,k,3} x_2^j x_3^k \partial_3$$

where $t_{0,j,k,1}, t_{0,j,k,2}, t_{0,j,k,3} \in \mathbb{F}$ for all j and k. Since $D(x_1\partial_1 * x_1^2\partial_1) = 2D(x_1^2\partial_1)$, we have that $t_{0,j,k,1} = t_{0,j,k,2} = t_{0,j,k,3} = 0$ for all j and k. This implies that

$$D(x_1\partial_1) = c_1\partial_1,$$

$$D(x_1^2\partial_1) = 2c_1x\partial_1$$

hold. By $D(\partial_1 * x_1^3 \partial_1) = 3D(x_1^2 \partial_1)$, we have that

$$D(x_1^3 \partial_1) = 3c_1 x_1^2 \partial_1 + \sum_{j,k} s_{0,j,k,1} x_2^j x_3^k \partial_1 + \sum_{j,k} s_{0,j,k,2} x_2^j x_3^k \partial_2 + \sum_{j,k} s_{0,j,k,3} x_2^j x_3^k \partial_3$$

where $s_{0,j,k,1}, s_{0,j,k,2}, s_{0,j,k,3} \in \mathbb{F}$ for all j and k. By $D(x_1\partial_1 * x_1^3\partial_1) = 3D(x_1^3\partial_1)$, we have that $s_{0,j,k,1} = s_{0,j,k,2} = s_{0,j,k,3} = 0$ for all j and k and $D(x_1^3\partial_1) = 3c_1x_1^2\partial_1$. Since $D(x_1^2\partial_1 * x_1^{i-1}\partial_1) = (i-1)D(x_1^i\partial_1)$, by induction on i of $x_1^i\partial_1$, we are able to prove that

$$D(x_1^i\partial_1) = ic_1x_1^{i-1}\partial_1.$$

Similarly we are also able to prove that

$$D(x_2^j \partial_2) = j d_2 x_2^{j-1} \partial_2,$$

$$D(x_3^k \partial_3) = j h_3 x_3^{j-1} \partial_3.$$

Since ∂_u , $1 \leq u \leq 3$, is in the left annihilator of $x_1\partial_2$, we can prove that $D(x_1\partial_2) = \alpha_1\partial_1 + \alpha_2\partial_2 + \alpha_3\partial_3$. By $D(x_1\partial_1 * x_1\partial_2) = D(x_1\partial_2)$, we can also prove that $\alpha_1 = \alpha_3 = 0$, $\alpha_2 = c_1$. This implies that $D(x_1\partial_2) = c_1\partial_2$. Since $D(x_1^2\partial_1 * x_1^{i-1}\partial_2) = (i-1)D(x_1^i\partial_2)$, by induction on i of $x_1^i\partial_2$, we can prove that

$$D(x_1^i \partial_2) = ic_1 x_1^{i-1} \partial_2$$

Similarly we are able to prove that

$$D(x_1^i \partial_3) = ic_1 x_1^{i-1} \partial_3,$$

$$D(x_2^j \partial_u) = jd_2 x_2^{j-1} \partial_u,$$

$$D(x_3^k \partial_u) = kh_3 x_3^{k-1} \partial_u$$

where $1 \leq u \leq 3$. By $D(x_1^i \partial_2 * x_2^{j+1} \partial_u) = (j+1)D(x_1^i x_2^j \partial_u)$, we have that

$$D(x_1^i x_2^j \partial_u) = ic_1 x_1^{i-1} x_2^j \partial_u + j d_2 x_1^i x_2^{j-1} \partial_u$$

where $1 \le u \le 3$. Since $D(x_1^i x_2^j \partial_3 * x_3^{k+1} \partial_u) = (k+1)D(x_1^i x_2^j x_3^k \partial_u)$, we are also able to prove that

$$D(x_1^i x_2^j x_3^k \partial_u) = ic_1 x_1^{i-1} x_2^j x_3^k \partial_u + j d_2 x_1^i x_2^{j-1} x_3^k \partial_u + k h_3 x_1^i x_2^j x_3^{k-1} \partial_u.$$

where $1 \le u \le 3$. So we have proven the lemma.

Lemma 2.2. For any derivation D of the algebra $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$ and for basis elements $x_1^{i_1}x_2^{i_2}x_3^{i_3}\partial_u, e^{px_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_u, 1 \le u \le 3$, of $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$, we have that

$$\begin{split} D(x_1^i x_2^j x_3^k \partial_u) &= 0, \\ D(e^{x_1^{r_1} x_2^{r_2} x_3^{r_3}} \partial_u) &= c_{r_1, r_2, r_3} e^{x_1^{r_1} x_2^{r_2} x_3^{r_3}} \partial_u, \end{split}$$

hold where $c \in \mathbb{F}$.

Proof. Let D be the derivation in the lemma. Since the algebra $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$ is \mathbb{Z} -graded, $D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_1)$ is the sum of terms in different homogeneous components of $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$ in (5). Assume that

$$D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_1) = \sum_{\substack{r_1, r_2, r_3, i, j, k \ge 0 \\ r_1, r_2, r_3, i, j, k \ge 0}} a_{r_1, r_2, r_3, i, j, k, 2} e^{px_1^{r_1}x_2^{r_2}x_3^{r_3}} x_1^i x_2^j x_3^k \partial_1$$

+
$$\sum_{\substack{r_1, r_2, r_3, i, j, k \ge 0 \\ r_1, r_2, r_3, i, j, k \ge 0}} a_{r_1, r_2, r_3, i, j, k, 3} e^{px_1^{r_1}x_2^{r_2}x_3^{r_3}} x_1^i x_2^j x_3^k \partial_3$$

with appropriate coefficients. We have that

$$D(\partial_{1} * e^{x_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}\partial_{1}) = r_{1}D(e^{x_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}x_{1}^{r_{1}-1}x_{2}^{r_{2}}x_{3}^{r_{3}}}\partial_{1})$$

$$= \sum_{r_{1},r_{2},r_{3},i,j,k\geq 0} pr_{1}a_{r_{1},r_{2},r_{3},i,j,k,1}e^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}x_{1}^{r_{1}+i-1}x_{2}^{r_{2}+j}x_{3}^{r_{3}+k}}\partial_{1}$$

$$+ \sum_{i\geq 1,r_{1},r_{2},r_{3},i,j,k\geq 0} ia_{r_{1},r_{2},r_{3},i,j,k,2}e^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}x_{1}^{r_{1}-1}x_{2}^{j}x_{3}^{k}}\partial_{1}$$

$$+ \sum_{r_{1},r_{2},r_{3},i,j,k\geq 0} pr_{1}a_{r_{1},r_{2},r_{3},i,j,k,2}e^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}x_{1}^{r_{1}+i-1}x_{2}^{r_{2}+j}x_{3}^{r_{3}+k}}\partial_{2}$$

$$+ \sum_{i\geq 1,r_{1},r_{2},r_{3},i,j,k\geq 0} pr_{1}a_{r_{1},r_{2},r_{3},i,j,k,3}e^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}x_{1}^{r_{1}+i-1}x_{2}^{r_{2}+j}x_{3}^{r_{3}+k}}\partial_{3}$$

$$+ \sum_{i\geq 1,r_{1},r_{2},r_{3},i,j,k\geq 0} pr_{1}a_{r_{1},r_{2},r_{3},i,j,k,3}e^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}x_{1}^{r_{1}-1}x_{2}^{j}x_{3}^{k}}\partial_{3}$$

and

$$D(e^{x_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}\partial_{1} * x_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}\partial_{1}) = r_{1}D(e^{x_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}x_{1}^{r_{1}-1}x_{2}^{r_{2}}x_{3}^{r_{3}}\partial_{1})$$

$$= D(e^{x_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}\partial_{1}) * x_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}\partial_{1} + e^{x_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}\partial_{1} * D(x_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}\partial_{1})$$

$$= r_{1}\sum_{r_{1},r_{2},r_{3},i,j,k\geq 0} a_{i,j,k,1}e^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}x_{1}^{i+r_{1}-1}x_{2}^{j+r_{2}}x_{3}^{k+r_{3}}\partial_{1}$$

$$+ r_{2}\sum_{r_{1},r_{2},r_{3},i,j,k\geq 0} a_{r_{1},r_{2},r_{3},i,j,k,2}e^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}x_{1}^{i+r_{1}}x_{2}^{j+r_{2}-1}x_{3}^{k+r_{3}}\partial_{1}$$

$$(9)$$

$$+ r_{3}\sum_{r_{1},r_{2},r_{3},i,j,k\geq 0} a_{r_{1},r_{2},r_{3},i,j,k,3}e^{px_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}x_{1}^{i+r_{1}}x_{2}^{j+r_{2}}x_{3}^{k+r_{3}-1}\partial_{1}$$

$$+ (r_{1}-1)r_{1}c_{1}e^{x_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}x_{1}^{r_{1}-2}x_{2}^{r_{2}}x_{3}^{r_{3}}}\partial_{1}$$

$$+ r_{1}r_{2}d_{2}e^{x_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}x_{1}^{r_{1}-1}x_{2}^{r_{2}-1}x_{3}^{r_{3}}}\partial_{1}$$

$$+ r_{1}r_{3}h_{3}e^{x_{1}^{r_{1}}x_{2}^{r_{2}}x_{3}^{r_{3}}}x_{1}^{r_{1}-1}x_{2}^{r_{2}}x_{3}^{r_{3}-1}}\partial_{1}.$$

By comparing (8) and (9), we have that

$$p = 1,$$

$$a_{r_1, r_2, r_3, i, j, k, 2} = a_{r_1, r_2, r_3, i, j, k, 3} = 0, r_1, r_2, r_3, i, j, k \ge 0,$$

$$a_{r_1, r_2, r_3, i, j, k, 1} = 0, i \ge 1, \text{ and}$$

$$c_1 = d_2 = h_3 = 0.$$

This implies that

(10)
$$D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_1) = \sum_{r_1, r_2, r_3, j, k \ge 0} a_{r_1, r_2, r_3, 0, j, k, 1} e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}} x_2^j x_3^k \partial_1,$$

and we also have

$$D(x_1^i x_2^j x_3^k \partial_u) = 0$$

where $1 \leq u \leq 3$. Similarly we can prove that

(11)
$$D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_u) = \sum_{r_1, r_2, r_3, j, k \ge 0} a_{r_1, r_2, r_3, 0, j, k, 1} e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}} x_2^j x_3^k \partial_u.$$

where $2 \le u \le 3$. Since

$$D(\partial_2 * e^{x_1^{r_1} x_2^{r_2} x_3^{r_3}} \partial_1) = r_2 D(e^{x_1^{r_1} x_2^{r_2} x_3^{r_3}} x_1^{r_1} x_2^{r_2 - 1} x_3^{r_3} \partial_1)$$

= $r_2 \sum_{r_1, r_2, r_3, j, k \ge 0} a_{r_1, r_2, r_3, 0, j, k, 1} e^{x_1^{r_1} x_2^{r_2} x_3^{r_3}} x_1^{r_1} x_2^{r_2 + j - 1} x_3^{r_3 + k} \partial_1$
+ $\sum_{j \ge 1, r_1, r_2, r_3, k \ge 0} j a_{r_1, r_2, r_3, 0, j, k, 1} e^{x_1^{r_1} x_2^{r_2} x_3^{r_3}} x_2^{j - 1} x_3^k \partial_1$

and

$$D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_2 * x_1^{r_1}x_2^{r_2}x_3^{r_3}\partial_1) = r_2D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^{r_1}x_2^{r_2-1}x_3^{r_3}\partial_1)$$

= $r_2\sum_{r_1,r_2,r_3,j,k\geq 0} a_{0,j,k,1}e^{x_1^{r_1}x_1^{r_1}x_2^{r_2+j-1}x_3^{r_3+k}}\partial_1,$

we have that $a_{r_1,r_2,r_3,0,j,k,1} = 0, j \ge 1$. This implies that

(12)
$$D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_1) = \sum_{r_1, r_2, r_3, k \ge 0} a_{r_1, r_2, r_3, 0, 0, k, 1} e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}} x_3^k \partial_1.$$

Similarly we can prove that

(13)
$$D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_u) = \sum_{r_1, r_2, r_3, k \ge 0} a_{r_1, r_2, r_3, 0, 0, k, 1} e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}} x_3^k \partial_u.$$

where $2 \le u \le 3$. Since

$$\begin{split} D(\partial_3 * e^{x_1^{r_1} x_2^{r_2} x_3^{r_3}} \partial_1) &= r_3 D(e^{x_1^{r_1} x_2^{r_2} x_3^{r_3}} x_1^{r_1} x_2^{r_2} x_3^{r_3-1} \partial_1) \\ &= \sum_{r_1, r_2, r_3, k \ge 0} a_{r_1, r_2, r_3, 0, 0, k, 1} e^{x_1^{r_1} x_2^{r_2} x_3^{r_3}} x_1^{r_1} x_2^{r_2} x_3^{r_3+k-1} \partial_1 \\ &+ \sum_{r_1, r_2, r_3 \ge 0, k \ge 1} k a_{r_1, r_2, r_3, 0, 0, k, 1} e^{x_1^{r_1} x_2^{r_2} x_3^{r_3}} x_3^{k-1} \partial_1 \end{split}$$

and

$$\begin{split} D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_3 * x_1^{r_1}x_2^{r_2}x_3^{r_3}\partial_1) &= r_3D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^{r_1}x_2^{r_2}x_3^{r_3-1}\partial_1) \\ &= \sum_{r_1, r_2, r_3, k \ge 0} r_3a_{r_1, r_2, r_3, 0, 0, k, 1}e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^{r_1}x_2^{r_2}x_3^{r_3+k-1}\partial_1. \end{split}$$

Thus we have that $a_{r_1,r_2,r_3,0,0,k,1} = 0, k \ge 1$. This implies that

(14)
$$D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_1) = a_{r_1,r_2,r_3,0,0,0,1}e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_1.$$

By (14) and $D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_1 * x_1\partial_u) = D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_u)$, we can prove that

$$D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_u) = a_{r_1,r_2,r_3,0,0,0,1}e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_u,$$

where $2 \leq u \leq 3$. Putting $c_{r_1,r_2,r_3} = a_{r_1,r_2,r_3,0,0,0,1}$, we have that $D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_u) = c_{r_1,r_2,r_3}e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_u$. Therefore we have proven the lemma.

Theorem 2.3. For any derivation D of the algebra $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$ and for basis elements

$$e^{px_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^ix_2^jx_3^k\partial_u, 1 \le u \le 3, \text{ of } WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}, \text{ we have that}$$
$$D(e^{px_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^ix_2^jx_3^k\partial_u) = pc_{r_1, r_2, r_3}e^{px_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^ix_2^jx_3^k\partial_u$$

hold where $p \in \mathbb{Z}$ and $c \in \mathbb{F}$.

Proof. Let D be the derivation in the lemma. By $D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_1$

 $*x_1^{i+1}x_2^jx_3^k\partial_u) = (i+1)D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^ix_2^jx_3^k\partial_u), \text{ we are able to prove that}$ $D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^ix_2^jx_3^k\partial_u) = c_{r_1,r_2,r_3}e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^ix_2^jx_3^k\partial_u \text{ for } 1 \le u \le 3, \text{ with} appropriate coefficients. By$

 $D(e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^{i-r_1+1}x_2^{j-r_2}x_3^{k-r_3}\partial_1 * e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_u) = r_1D(e^{2x_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^ix_2^jx_3^k\partial_u),$

we prove that

$$D(e^{2x_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^ix_2^jx_3^k\partial_u) = 2c_{r_1,r_2,r_3}e^{2x_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^ix_2^jx_3^k\partial_u.$$

By induction on $p \in \mathbb{Z}$ of $e^{px_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^i x_2^j x_3^k \partial_u$ and $D(e^{(p-1)x_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^{i-r_1+1}x_2^{j-r_2}x_3^{k-r_3}\partial_1 * e^{x_1^{r_1}x_2^{r_2}x_3^{r_3}}\partial_u) = r_1D(e^{px_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^i x_2^j x_3^k \partial_u),$ we are able to prove that

$$D(e^{px_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^i x_2^j x_3^k \partial_u) = pc_{r_1, r_2, r_3} e^{px_1^{r_1}x_2^{r_2}x_3^{r_3}}x_1^i x_2^j x_3^k \partial_u.$$

Therefore the proof is completed.

Theorem 2.4. For any $D \in Der_{non}(WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}), D$ is the linear sum of the derivations D_c as shown in Note 1 where $c \in \mathbb{F}$. Every derivation of the algebra $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$ is outer.

Proof. The proofs of the theorem are straightforward by Lemma 2.2, Theorem 2.3, and the fact that the derivation of Note 1 cannot be inner. This completes the proof of the theorem. \Box

Corollary 2.5. The dimension of $Der_{non}(WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]})$ of the algebra $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$ is one. For any derivation D of $Der_{non}(WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}), D(\mathfrak{A}) = 0$ holds where \mathfrak{A} is the zerohomogeneous component of $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$ in (5) (see [9]).

Proof. The proofs of the corollary are straightforward by Lemma 2.2 and Note 1. $\hfill \Box$

Proposition 2.6. If A is not a purely outer algebra, then algebra A and $WN(e^{\pm x_1^{r_1}x_2^{r_2}x_3^{r_3}}, 0, 3)_{[1]}$ are not isomorphic.

Proof. The proof of the proposition is straightforward by Theorem 2.4. \Box

References

- Seul Hee Choi and Ki-Bong Nam, The Derivation of a Restricted Weyl Type Non-Associative Algebra, Hadronic Journal, 28(3), (2005), 287-295.
- [2] Seul Hee Choi, A growing algebra containing the polynomial ring, Honam Mathematical Journal, 32(3), (2010), 467-480.
- [3] Seul Hee Choi, An algebra with right identities and its antisymmetrized algebra, Honam Mathematical Journal, **29(2)**, (2007), 213-222.
- [4] Seul Hee Choi, New algebras using additive abelian groups I, Honam Mathematical Journal, 31(3), (2009), 407-419.
- [5] Seul Hee Choi and Ki-Bong Nam, Weyl type non-associative algebra using additive groups I, Algebra Colloquium, 14(3) (2007), 479-488.
- [6] Seul Hee Choi and Ki-Bong Nam, Derivations of a restricted Weyl Type Algebra I, Rocky Mountain Math. Journals, 37(6), (2007), 67-84.
- [7] Seul Hee Choi, Hong Goo Park, Moon-Ok Wang, and Ki-Bong Nam, Combinatorial algebra and its antisymmetrized algebra I, Algebra Colloquium, 22(1), (2015), 823-834.
- [8] Seul Hee Choi, Jongwoo Lee, and Ki-Bong Nam, Derivations of a restricted Weyl type algebra containing the polynomial ring, Communication in Algebra, 36(9), (2008), 3435 - 3446.
- [9] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, (1987), 7-21.
- [10] T. Ikeda, N. Kawamoto and Ki-Bong Nam, A class of simple subalgebras of Generalized W algebras, Proceedings of the International Conference in 1998 at Pusan (Eds. A. C. Kim), Walter de Gruyter Gmbh Co. KG, (2000), 189-202.
- [11] V. G. Kac, Description of the filtered Lie algebras with which graded Lie algebras of Cartan type are associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom, 38, (1974), 832-834.
- [12] Jongwoo Lee and Ki-bong Nam, Non-Associative Algebras containing the Matrix Ring, Linear Algebra and its Applications **429(1)**, (2008), Pages 72-78.
- [13] Ki-Bong Nam, Generalized W and H Type Lie Algebras, Algebra Colloquium 6(3), (1999), 329-340.
- [14] Ki-Bong Nam, On Some Non-Associative Algebras Using Additive Groups, Southeast Asian Bulletin of Mathematics, 27, Springer Verlag, (2003), 493-500.
- [15] R. D. Schafer, Introduction to nonassociative algebras, Dover, (1995), 128-138.

Seul Hee Choi Department of Mathematics, Jeonju University, Jeonju, Jeonbuk 55069, Korea. E-mail: chois@jj.ac.kr