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DERIVATIONS OF A NON-ASSOCIATIVE GROWING

ALGEBRA

Seul Hee Choi

Abstract. There are various papers on finding all the derivations
of a non-associative algebra and an anti-symmetrized algebra. We
find all the derivations of a growing algebra in the paper. The
dimension of derivations of the growing algebra is one and every
derivation of the growing algebra is outer. We show that there is a
class of purely outer algebras in this work.

1. Introduction

Let N be the set of all non-negative integers and Z be the set of
all integers. Let N+ be the set of all positive integers. Let F be a
field of characteristic zero and F• the set of all non-zero elements in
F. Throughout the paper, we will assume that e is not the element
of the field F. For n, t ∈ N, throughout the paper, m denotes a non-
negative integer such that m ≤ n+ t. For fixed integers, i1, · · · , im and
for given irreducible polynomials f1, · · · , fm ∈ F[x1, · · · , xn+t], define

[f i11 , · · · , f imm ] as the set Polym = Pm = {f i11 · · · f imm , f i11 · · · f
im−1

m−1 , · · · ,
f i22 · · · f imm , · · · , f i11 , · · · , f imm }. For any subset P of Pm, define the F-

algebra F[e±[P ], n, t] := F[e±[P ], x±1
1 , · · · , x±1

n , xn+1, · · · , xn+t], which is
spanned by

B = {ea1f1 · · · earfrxj11 · · ·x
jn+t
n+t |f1, · · · , fr ∈ P, a1, · · · , ar ∈ Z,

j1, · · · , jn ∈ Z, jn+1, · · · , jn+t ∈ N}
We then denote ∂r1h1 · · · ∂

rr
hr

by the composition of the partial deriva-

tives ∂h1 , · · · , ∂hr on F[e±[P ], n, t] with appropriate exponents where 1 ≤
h1, · · · , hr ≤ n + t and ∂0h, 1 ≤ h ≤ n + t, denotes the identity map on

F[e±[P ], n, t]. For any αu ∈ P ⊂ Pm, let Aαu be an additive subgroup
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of F such that Aαu contains Z. Consider now the (free) F-vector space
N(eAP , n, t)k (resp. N(eAP , n, t)k+) whose basis is the set

B1 = {ea1f1 · · · earfrxj11 · · ·x
jn+t
n+t ∂

r1
h1
· · · ∂rrhr

|a1 ∈ Aα1 , · · · , ar ∈ Aαr ,

f1, · · · , fr ∈ P, h1, · · · , hr ≤ n + t, r1 + · · ·+ rr ≤ k ∈ N ( resp. N+)}
(1)

If we define the multiplication ∗ on N(eAP , n, t)k as follows:

f∂p1h1 · · · ∂
pr
hr
∗ g∂v1u1 · · · ∂

vq
uq = f(∂p1h1 · · · ∂

pr
hr

(g))∂v1u1 · · · ∂
vq
uq(2)

for any f∂p1h1 · · · ∂
pr
hr
, g∂v1u1 · · · ∂

vq
uq ∈ N(eAP , n, t)k, then we define the com-

binatorial non-associative algebra WN(eAP , n, t)k whose underlying vec-
tor space is N(eAP , n, t)k and whose multiplication is ∗ in (2) (see [1],
[5], [13] and [14]). The non-associative subalgebra WN(eAP , n, t)<k> of
the algebra WN(eAP , n, t)k is generated by

{f∂r1h1 · · · ∂
rr
hr
|f ∈ B, 1 ≤ h1, · · · , hr ≤ n+ t, r1 + · · ·+ rr = k ∈ N+}.(3)

The non-associative subalgebra WN(eAP , n, t)[k] of the algebra

WN(eAP , n, t)k is generated by

{f∂kh|f ∈ B, 1 ≤ h ≤ n+ t}.(4)

For an algebra A and l ∈ A, an element l1 ∈ A is a right (resp. left)
identity of l, if l ∗ l1 = l (resp. l1 ∗ l = l) holds. The set of all right iden-
tities of WN(eAP , n, t)[1] is {

∑
1≤u≤n+t xu∂u +

∑
1≤u≤n+t cu∂u|cu ∈ F}.

There is no left identity ofWN(eAP , n, t)k+ . The algebraWN(eAP , n, t)k
has the left identity 1. If A is an associative F-algebra, then the anti-
symmetrized algebra of A is a Lie algebra relative to the commutator
[x, y] := xy − yx, (See [9]). For a general non-associative F-algebra N
we define in the same way its antisymmetrized algebra N−. In case N−

is a Lie algebra we shall say that N is Lie admissible. For S ⊂ N−, an
element l is ad-diagonal with respect to S if for any l1 ∈ S, [l, l1] = cl1
for c ∈ F. The algebra WN(eAP , n, t)[1] is Lie admissible (see [8] and
[15]). Since the cardinality |P | of P is 2m, for all α ∈ Pm, if Aα is Z,
then the algebra WN(eAPm , n, t)k is Z2m-graded as follows:

WN(eAPm , n, t)k =
⊕

(a1,··· ,am2 )

N(a1,··· ,am2 )(5)

where N(a1,··· ,a2m ) is the vector subspace of WN(eAPm , n, t)k spanned by

{ea1f1 · · · earfrxj11 · · ·x
jn+t
n+t |j1, · · · , jn ∈ Z, jn+1, · · · , jn+t ∈ N}.

This implies that WN(eAP , n, t)k and WN(eAP , n, t)k+ are appropri-
ate graded algebras as (5) (see [11]). Thus throughout the paper, the
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(0, · · · , 0)-homogeneous component N0 of WN(eAP , n, t)k is the subal-
gebra WN(0, n, t)k of WN(eAP , n, t)k . For any standard basis element

ea1f1 · · · earfr xj11 · · ·x
jn+t
n+t ∂

r1
t1
· · · ∂rrtr of WN(eAPm , n, t)k, define the ho-

mogeneous degree as follows:

hd(ea1f1 · · · earfrxj11 · · ·x
jn+t
n+t ∂

r1
t1
· · · ∂rrtr ) =

n+t∑
u=1

|ju|

where |ju| is the absolute value of ju for 1 ≤ u ≤ n+ t. For any el-
ement l ∈ WN(eAP , n, t)k, define hd(l) as the highest homogeneous
degree of each monomial of l. Note that the set of all right annihila-
tors of WN(eAP , n, t)k is the subalgebra Tn+t of WN(eAP , n, t)k which
is spanned by {∂r1t1 · · · ∂

rr
tr |1 ≤ t1, · · · , tr ≤ n+ t, r1 + · · ·+ rr ≤ k ∈ N}.

For a given algebra A, Out(A) (resp. Inn(A)) is the set of all the outer
(resp. inner) derivations of A and Der(A) is the set of all the derivations
of A. An algebra A is purely outer, if every derivation of A is outer i.e.,
Der(A) = Out(A). There are various papers on studying the derivations
of a non-associative algebra and an anti-symmetrized algebra (see [1],
[2], [3], [5], [6], [7], [10], [12], [14]). We find all the derivations of a
growing algebra in section 2.

2. Derivations of the non-associative algebra

WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1]

For this section, the set of all right annihilators T3 of

WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1]

is spanned by {∂1, ∂2, ∂3}. The algebra WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1] is Z-

graded (see [5]). The algebraWN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1] and the Lie algebra

WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1]

−
are simple (see [3] and [11] ).

Note 1. For any basis elements ∂u, xi11 x
i2
2 x

i3
3 ∂u, epx

r1
1 x

r2
2 x

r3
3 xi11 x

i2
2 x

i3
3 ∂u,

ri ≥ 1, 1 ≤ u ≤ 3, of WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)1, and for any c ∈ F, p ∈ Z,

if we define an F-linear map Dc from the algebra WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)1

to itself as follows:

Dc(∂u) = 0,

Dc(x
i1
1 x

i2
2 x

i3
3 ∂u) = 0,

Dc(e
px
r1
1 x

r2
2 x

r3
3 xi11 x

i2
2 x

i3
3 ∂u) = pcepx

r1
1 x

r2
2 x

r3
3 xi11 x

i2
2 x

i3
3 ∂u,

(6)
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then the map Dc can be linearly extended to a non-associative algebra
derivation of
WN(e±x

r1
1 x

r2
2 x

r3
3 , 0, 3)[1] (see [4], [6], [8] and [10]). �

Lemma 2.1. For any derivation D of WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1] and

for any basis elements ∂u, xi1x
j
2x
k
3∂u, 1 ≤ u ≤ 3, of

WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1], we have that

D(∂u) = 0,

D(xi1x
j
2x
k
3∂u) = ic0,0,0,1x

i−1
1 xj2x

k
3∂u + jd0,0,0,2x

i
1x
j−1
2 xk3∂u

+kr0,0,0,3x
i
1x
j
2x
k−1
3 ∂u

hold with appropriate coefficients where 1 ≤ u ≤ 3.

Proof. Let D be the derivation in the lemma. Since the algebra

WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1] is Z-graded, D(∂1) is the sum of terms in dif-

ferent homogeneous components of WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1] in (5). So

D(∂1) can be written as follows:

D(∂1) =
∑

r1,r2,r3,i,j,k≥0

αr1, r2, r3, i, j, k, 1 e
px
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3 ∂1

+
∑

r1,r2,r3,i,j,k≥0

αr1, r2, r3, i, j, k, 2 e
px
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3 ∂2

+
∑

r1,r2,r3,i,j,k≥0

αr1, r2, r3, i, j, k, 3e
px
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3 ∂3

with appropriate coefficients. Since ∂1 centralizes itself, we have that
D(∂1) is in the right annihilator of ∂1, i.e.,
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∂1∗D(∂1)

=
∑

r1,r2,r3,i,j,k≥0

pr1αr1,r2,r3,i,j,k,1e
px
r1
1 x

r2
2 x

r3
3 xi+r1−1

1 xj+r22 xk+r33 ∂1

+
∑

i≥1,r1,r2,r3,j,k≥0

iαr1,r2,r3,i,j,k,1e
px
r1
1 x

r2
2 x

r3
3 xi−1

1 xj2x
k
3∂1

+
∑

r1,r2,r3,i,j,k≥0

pr1αr1,r2,r3,i,j,k,2e
px
r1
1 x

r2
2 x

r3
3 xi+r11 xj+r22 xk+r33 ∂2

+
∑

i≥1,r1,r2,r3,j,k≥0

iαr1,r2,r3,i,j,k,2e
px
r1
1 x

r2
2 x

r3
3 xi−1

1 xj2x
k
3∂2

+
∑

r1,r2,r3,i,j,k≥0

pr1αr1,r2,r3,i,j,k,3e
px
r1
1 x

r2
2 x

r3
3 xi+r11 xj+r22 xk+r33 ∂3

+
∑

i≥1,r1,r2,r3,j,k≥0

iαr1,r2,r3,i,j,k,3e
px
r1
1 x

r2
2 x

r3
3 xi−1

1 xj2x
k
3∂3

= 0

(7)

with appropriate coefficients. By (7), we have that αr1,r2,r3,i,j,k,1,
αr1,r2,r3,i,j,k,2, and αr1,r2,r3,i,j,k,3, are zeros, r1, r2, r3, i, j, k ≥ 0. Thus
D(∂1) is zero. Similarly we can prove that D(∂2) and D(∂3) are also
zeros. Since ∂1 centralizes x1∂1, we can also prove that

D(x1∂1) = c1∂1 + c2∂2 + c3∂3.

Since x1∂1 is an idempotent, we can prove that c2 = 0, c3 = 0. This
implies that D(x1∂1) = c1∂1. Since D(∂1 ∗ x21∂1) = 2D(x1∂1), we are
also able to prove that

D(x21∂1) = 2c1x1∂1 +
∑
j,k

t0,j,k,1x
j
2x
k
3∂1

+
∑
j,k

t0,j,k,2x
j
2x
k
3∂2 +

∑
j,k

t0,j,k,3x
j
2x
k
3∂3

where t0,j,k,1, t0,j,k,2, t0,j,k,3 ∈ F for all j and k. Since D(x1∂1 ∗ x21∂1) =
2D(x21∂1), we have that t0,j,k,1 = t0,j,k,2 = t0,j,k,3 = 0 for all j and k.
This implies that

D(x1∂1) = c1∂1,

D(x21∂1) = 2c1x∂1



232 Seul Hee Choi∗

hold. By D(∂1 ∗ x31∂1) = 3D(x21∂1), we have that

D(x31∂1) = 3c1x
2
1∂1 +

∑
j,k

s0,j,k,1x
j
2x
k
3∂1

+
∑
j,k

s0,j,k,2x
j
2x
k
3∂2 +

∑
j,k

s0,j,k,3x
j
2x
k
3∂3,

where s0,j,k,1, s0,j,k,2, s0,j,k,3 ∈ F for all j and k. By D(x1∂1 ∗ x31∂1) =
3D(x31∂1), we have that s0,j,k,1 = s0,j,k,2 = s0,j,k,3 = 0 for all j and k

and D(x31∂1) = 3c1x
2
1∂1. Since D(x21∂1 ∗ x

i−1
1 ∂1) = (i − 1)D(xi1∂1), by

induction on i of xi1∂1, we are able to prove that

D(xi1∂1) = ic1x
i−1
1 ∂1.

Similarly we are also able to prove that

D(xj2∂2) = jd2x
j−1
2 ∂2,

D(xk3∂3) = jh3x
j−1
3 ∂3.

Since ∂u, 1 ≤ u ≤ 3, is in the left annihilator of x1∂2, we can prove that
D(x1∂2) = α1∂1 + α2∂2 + α3∂3. By D(x1∂1 ∗ x1∂2) = D(x1∂2), we can
also prove that α1 = α3 = 0, α2 = c1. This implies that D(x1∂2) = c1∂2.
Since D(x21∂1 ∗ x

i−1
1 ∂2) = (i− 1)D(xi1∂2), by induction on i of xi1∂2, we

can prove that

D(xi1∂2) = ic1x
i−1
1 ∂2.

Similarly we are able to prove that

D(xi1∂3) = ic1x
i−1
1 ∂3,

D(xj2∂u) = jd2x
j−1
2 ∂u,

D(xk3∂u) = kh3x
k−1
3 ∂u

where 1 ≤ u ≤ 3. By D(xi1∂2 ∗ x
j+1
2 ∂u) = (j + 1)D(xi1x

j
2∂u), we have

that

D(xi1x
j
2∂u) = ic1x

i−1
1 xj2∂u + jd2x

i
1x
j−1
2 ∂u

where 1 ≤ u ≤ 3. Since D(xi1x
j
2∂3 ∗ x

k+1
3 ∂u) = (k + 1)D(xi1x

j
2x
k
3∂u), we

are also able to prove that

D(xi1x
j
2x
k
3∂u) = ic1x

i−1
1 xj2x

k
3∂u + jd2x

i
1x
j−1
2 xk3∂u + kh3x

i
1x
j
2x
k−1
3 ∂u.

where 1 ≤ u ≤ 3. So we have proven the lemma.
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Lemma 2.2. For any derivation D of the algebra

WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1] and for basis elements xi11 x

i2
2 x

i3
3 ∂u, epx

r1
1 x

r2
2 x

r3
3 ∂u,

1 ≤ u ≤ 3, of WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1], we have that

D(xi1x
j
2x
k
3∂u) = 0,

D(ex
r1
1 x

r2
2 x

r3
3 ∂u) = cr1,r2,r3e

x
r1
1 x

r2
2 x

r3
3 ∂u,

hold where c ∈ F.

Proof. Let D be the derivation in the lemma. Since the algebra

WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1] is Z-graded, D(ex

r1
1 x

r2
2 x

r3
3 ∂1) is the sum of terms

in different homogeneous components of WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1] in (5).

Assume that

D(ex
r1
1 x

r2
2 x

r3
3 ∂1) =

∑
r1,r2,r3,i,j,k≥0

ar1,r2,r3,i,j,k,1e
px
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3∂1

+
∑

r1,r2,r3,i,j,k≥0

ar1,r2,r3,i,j,k,2e
px
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3∂2

+
∑

r1,r2,r3,i,j,k≥0

ar1,r2,r3,i,j,k,3e
px
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3∂3

with appropriate coefficients. We have that

D(∂1 ∗ ex
r1
1 x

r2
2 x

r3
3 ∂1) = r1D(ex

r1
1 x

r2
2 x

r3
3 xr1−1

1 xr22 x
r3
3 ∂1)

=
∑

r1,r2,r3,i,j,k≥0

pr1ar1,r2,r3,i,j,k,1e
px
r1
1 x

r2
2 x

r3
3 xr1+i−1

1 xr2+j2 xr3+k3 ∂1

+
∑

i≥1,r1,r2,r3,j,k≥0

iar1,r2,r3,i,j,k,1e
px
r1
1 x

r2
2 x

r3
3 xi−1

1 xj2x
k
3∂1

+
∑

r1,r2,r3,i,j,k≥0

pr1ar1,r2,r3,i,j,k,2e
px
r1
1 x

r2
2 x

r3
3 xr1+i−1

1 xr2+j2 xr3+k3 ∂2

+
∑

i≥1,r1,r2,r3,j,k≥0

iar1,r2,r3,i,j,k,2e
px
r1
1 x

r2
2 x

r3
3 xi−1

1 xj2x
k
3∂2

+
∑

r1,r2,r3,,i,j,k≥0

pr1ar1,r2,r3,i,j,k,3e
px
r1
1 x

r2
2 x

r3
3 xr1+i−1

1 xr2+j2 xr3+k3 ∂3

+
∑

i≥1,r1,r2,r3,j,k≥0

iar1,r2,r3,i,j,k,3e
px
r1
1 x

r2
2 x

r3
3 xi−1

1 xj2x
k
3∂3

(8)
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and

D(ex
r1
1 x

r2
2 x

r3
3 ∂1 ∗ xr11 x

r2
2 x

r3
3 ∂1) = r1D(ex

r1
1 x

r2
2 x

r3
3 xr1−1

1 xr22 x
r3
3 ∂1)

= D(ex
r1
1 x

r2
2 x

r3
3 ∂1) ∗ xr11 x

r2
2 x

r3
3 ∂1 + ex

r1
1 x

r2
2 x

r3
3 ∂1 ∗D(xr11 x

r2
2 x

r3
3 ∂1)

= r1
∑

r1,r2,r3,i,j,k≥0

ai,j,k,1e
px
r1
1 x

r2
2 x

r3
3 xi+r1−1

1 xj+r22 xk+r33 ∂1

+ r2
∑

r1,r2,r3,i,j,k≥0

ar1,r2,r3,i,j,k,2e
px
r1
1 x

r2
2 x

r3
3 xi+r11 xj+r2−1

2 xk+r33 ∂1

+ r3
∑

r1,r2,r3,i,j,k≥0

ar1,r2,r3,i,j,k,3e
px
r1
1 x

r2
2 x

r3
3 xi+r11 xj+r22 xk+r3−1

3 ∂1

+ (r1 − 1)r1c1e
x
r1
1 x

r2
2 x

r3
3 xr1−2

1 xr22 x
r3
3 ∂1

+ r1r2d2e
x
r1
1 x

r2
2 x

r3
3 xr1−1

1 xr2−1
2 xr33 ∂1

+ r1r3h3e
x
r1
1 x

r2
2 x

r3
3 xr1−1

1 xr22 x
r3−1
3 ∂1.

(9)

By comparing (8) and (9), we have that

p = 1,

ar1,r2,r3,i,j,k,2 = ar1,r2,r3,i,j,k,3 = 0, r1, r2, r3, i, j, k ≥ 0,

ar1,r2,r3,i,j,k,1 = 0, i ≥ 1, and

c1 = d2 = h3 = 0.

This implies that

D(ex
r1
1 x

r2
2 x

r3
3 ∂1) =

∑
r1,r2,r3,j,k≥0

ar1,r2,r3,0,j,k,1e
x
r1
1 x

r2
2 x

r3
3 xj2x

k
3∂1,(10)

and we also have

D(xi1x
j
2x
k
3∂u) = 0

where 1 ≤ u ≤ 3. Similarly we can prove that

D(ex
r1
1 x

r2
2 x

r3
3 ∂u) =

∑
r1,r2,r3,j,k≥0

ar1,r2,r3,0,j,k,1e
x
r1
1 x

r2
2 x

r3
3 xj2x

k
3∂u.(11)

where 2 ≤ u ≤ 3. Since

D(∂2 ∗ ex
r1
1 x

r2
2 x

r3
3 ∂1) = r2D(ex

r1
1 x

r2
2 x

r3
3 xr11 x

r2−1
2 xr33 ∂1)

= r2
∑

r1,r2,r3,j,k≥0

ar1,r2,r3,0,j,k,1e
x
r1
1 x

r2
2 x

r3
3 xr11 x

r2+j−1
2 xr3+k3 ∂1

+
∑

j≥1,r1,r2,r3,k≥0

jar1,r2,r3,0,j,k,1e
x
r1
1 x

r2
2 x

r3
3 xj−1

2 xk3∂1
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and

D(ex
r1
1 x

r2
2 x

r3
3 ∂2 ∗ xr11 x

r2
2 x

r3
3 ∂1) = r2D(ex

r1
1 x

r2
2 x

r3
3 xr11 x

r2−1
2 xr33 ∂1)

= r2
∑

r1,r2,r3,j,k≥0

a0,j,k,1e
x
r1
1 x

r1
! x

r2+j−1
2 x

r3+k
3 ∂1,

we have that ar1,r2,r3,0,j,k,1 = 0, j ≥ 1. This implies that

D(ex
r1
1 x

r2
2 x

r3
3 ∂1) =

∑
r1,r2,r3,k≥0

ar1,r2,r3,0,0,k,1e
x
r1
1 x

r2
2 x

r3
3 xk3∂1.(12)

Similarly we can prove that

D(ex
r1
1 x

r2
2 x

r3
3 ∂u) =

∑
r1,r2,r3,k≥0

ar1,r2,r3,0,0,k,1e
x
r1
1 x

r2
2 x

r3
3 xk3∂u.(13)

where 2 ≤ u ≤ 3. Since

D(∂3 ∗ ex
r1
1 x

r2
2 x

r3
3 ∂1) = r3D(ex

r1
1 x

r2
2 x

r3
3 xr11 x

r2
2 x

r3−1
3 ∂1)

=
∑

r1,r2,r3,k≥0

ar1,r2,r3,0,0,k,1e
x
r1
1 x

r2
2 x

r3
3 xr11 x

r2
2 x

r3+k−1
3 ∂1

+
∑

r1,r2,r3≥0,k≥1

kar1,r2,r3,0,0,k,1e
x
r1
1 x

r2
2 x

r3
3 xk−1

3 ∂1

and

D(ex
r1
1 x

r2
2 x

r3
3 ∂3 ∗ xr11 x

r2
2 x

r3
3 ∂1) = r3D(ex

r1
1 x

r2
2 x

r3
3 xr11 x

r2
2 x

r3−1
3 ∂1)

=
∑

r1,r2,r3,k≥0

r3ar1,r2,r3,0,0,k,1e
x
r1
1 x

r2
2 x

r3
3 xr11 x

r2
2 x

r3+k−1
3 ∂1.

Thus we have that ar1,r2,r3,0,0,k,1 = 0, k ≥ 1. This implies that

D(ex
r1
1 x

r2
2 x

r3
3 ∂1) = ar1,r2,r3,0,0,0,1e

x
r1
1 x

r2
2 x

r3
3 ∂1.(14)

By (14) and D(ex
r1
1 x

r2
2 x

r3
3 ∂1 ∗ x1∂u) = D(ex

r1
1 x

r2
2 x

r3
3 ∂u), we can prove

that

D(ex
r1
1 x

r2
2 x

r3
3 ∂u) = ar1,r2,r3,0,0,0,1e

x
r1
1 x

r2
2 x

r3
3 ∂u,

where 2 ≤ u ≤ 3. Putting cr1,r2,r3 = ar1,r2,r3,0,0,0,1, we have that

D(ex
r1
1 x

r2
2 x

r3
3 ∂u) = cr1,r2,r3e

x
r1
1 x

r2
2 x

r3
3 ∂u. Therefore we have proven the

lemma.

Theorem 2.3. For any derivation D of the algebra

WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1] and for basis elements
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epx
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3∂u, 1 ≤ u ≤ 3, of WN(e±x

r1
1 x

r2
2 x

r3
3 , 0, 3)[1], we have that

D(epx
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3∂u) = pcr1,r2,r3e

px
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3∂u

hold where p ∈ Z and c ∈ F.

Proof. Let D be the derivation in the lemma.

By D(ex
r1
1 x

r2
2 x

r3
3 ∂1

∗xi+1
1 xj2x

k
3∂u) = (i+ 1)D(ex

r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3∂u), we are able to prove that

D(ex
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3∂u) = cr1,r2,r3e

x
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3∂u for 1 ≤ u ≤ 3, with

appropriate coefficients. By

D(ex
r1
1 x

r2
2 x

r3
3 xi−r1+1

1 xj−r2
2 xk−r3

3 ∂1 ∗ ex
r1
1 x

r2
2 x

r3
3 ∂u) = r1D(e2x

r1
1 x

r2
2 x

r3
3 xi1x

j
2x

k
3∂u),

we prove that

D(e2x
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3∂u) = 2cr1,r2,r3e

2x
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3∂u.

By induction on p ∈ Z of epx
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3∂u and

D(e(p−1)x
r1
1 x

r2
2 x

r3
3 xi−r1+1

1 xj−r22 xk−r33 ∂1 ∗ ex
r1
1 x

r2
2 x

r3
3 ∂u) = r1D(epx

r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3∂u),

we are able to prove that

D(epx
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3∂u) = pcr1,r2,r3e

px
r1
1 x

r2
2 x

r3
3 xi1x

j
2x
k
3∂u.

Therefore the proof is completed.

Theorem 2.4. For any D ∈ Dernon(WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1]), D is

the linear sum of the derivations Dc as shown in Note 1 where c ∈ F.
Every derivation of the algebra WN(e±x

r1
1 x

r2
2 x

r3
3 , 0, 3)[1] is outer.

Proof. The proofs of the theorem are straightforward by Lemma 2.2,
Theorem 2.3, and the fact that the derivation of Note 1 cannot be inner.
This completes the proof of the theorem.

Corollary 2.5. The dimension of Dernon(WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1])

of the algebra WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1] is one. For any derivation D of

Dernon(WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1]), D(A) = 0 holds where A is the zero-

homogeneous component of WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1] in (5) (see [9]).

Proof. The proofs of the corollary are straightforward by Lemma 2.2
and Note 1.

Proposition 2.6. If A is not a purely outer algebra, then algebra A

and WN(e±x
r1
1 x

r2
2 x

r3
3 , 0, 3)[1] are not isomorphic.

Proof. The proof of the proposition is straightforward by Theorem 2.4.
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