• Title/Summary/Keyword: Chromatic polynomial

Search Result 12, Processing Time 0.02 seconds

THE CHROMATIC POLYNOMIAL FOR CYCLE GRAPHS

  • Lee, Jonghyeon;Shin, Heesung
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.525-534
    • /
    • 2019
  • Let $P(G,{\lambda})$ denote the number of proper vertex colorings of G with ${\lambda}$ colors. The chromatic polynomial $P(C_n,{\lambda})$ for the cycle graph $C_n$ is well-known as $$P(C_n,{\lambda})=({\lambda}-1)^n+(-1)^n({\lambda}-1)$$ for all positive integers $n{\geq}1$. Also its inductive proof is widely well-known by the deletion-contraction recurrence. In this paper, we give this inductive proof again and three other proofs of this formula of the chromatic polynomial for the cycle graph $C_n$.

COMBINATORIAL PROOF FOR e-POSITIVITY OF THE POSET OF RANK 1

  • Lee, Jaejin
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.425-437
    • /
    • 2008
  • Let P be a poset and G = G(P) be the incomparability graph of P. Stanley [7] defined the chromatic symmetric function $X_{G(P)}$ which generalizes the chromatic polynomial ${\chi}_G$ of G, and showed all coefficients are nonnegative in the e-expansion of $X_{G(P)}$ for a poset P of rank 1. In this paper, we construct a sign reversing involution on the set of special rim hook P-tableaux with some conditions. It gives a combinatorial proof for (3+1)-free conjecture of a poset P of rank 1.

  • PDF

초평면 배열 이론과 4색 문제

  • 이기석;왕문옥;이준호
    • Journal for History of Mathematics
    • /
    • v.15 no.1
    • /
    • pp.147-168
    • /
    • 2002
  • In this paper, we introduce the arrangement of hyperplanes and the graph theory. In particular, we explain how to study the 4-color problem by using characteristic polynomials of the arrangement of hyperplanes. The 4-color problem was appeared in 1852 at first and Appel and Haken proved it by using computer in 1976. The arrangement of hyperplanes induced from a graph is called a graphic arrangement. Graphic arrangement is a subarrangement of Braid arrangement. Thus the chromatic function of a graph is equal to the characteristic polynomial of a graphic arrangement. If we use this result, we can apply the theory of the arrangement of hyperplanes to the study for the chromatic functions.

  • PDF

The Chromatic Number Algorithm in a Planar Graph (평면의 채색수 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.19-25
    • /
    • 2014
  • In this paper, I seek the chromatic number, the maximum number of colors necessary when adjoining vertices in the plane separated apart at the distance of 1 shall receive distinct colors. The upper limit of the chromatic number has been widely accepted as $4{\leq}{\chi}(G){\leq}7$ to which Hadwiger-Nelson proposed ${\chi}(G){\leq}7$ and Soifer ${\chi}(G){\leq}9$ I firstly propose an algorithm that obtains the minimum necessary chromatic number and show that ${\chi}(G)=3$ is attainable by determining the chromatic number for Hadwiger-Nelson's hexagonal graph. The proposed algorithm obtains a chromatic number of ${\chi}(G)=4$ assuming a Hadwiger-Nelson's hexagonal graph of 12 adjoining vertices, and again ${\chi}(G)=4$ for Soifer's square graph of 8 adjoining vertices. assert. Based on the results as such that this algorithm suggests the maximum chromatic number of a planar graph is ${\chi}(G)=4$ using simple assigned rule of polynomial time complexity to color for a vertex with minimum degree.

ON THE CHROMATICITY OF THE 2-DEGREE INTEGRAL SUBGRAPH OF q-TREES

  • Li, Xiaodong;Liu, Xiangwu
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.155-167
    • /
    • 2007
  • A graph G is called to be a 2-degree integral subgraph of a q-tree if it is obtained by deleting an edge e from an integral subgraph that is contained in exactly q - 1 triangles. An added-vertex q-tree G with n vertices is obtained by taking two vertices u, v (u, v are not adjacent) in a q-trees T with n - 1 vertices such that their intersection of neighborhoods of u, v forms a complete graph $K_{q}$, and adding a new vertex x, new edges xu, xv, $xv_{1},\;xv_{2},\;{\cdots},\;xv_{q-4}$, where $\{v_{1},\;v_{2},\;{\cdots},\;v_{q-4}\}\;{\subseteq}\;K_{q}$. In this paper we prove that a graph G with minimum degree not equal to q - 3 and chromatic polynomial $$P(G;{\lambda})\;=\;{\lambda}({\lambda}-1)\;{\cdots}\;({\lambda}-q+2)({\lambda}-q+1)^{3}({\lambda}-q)^{n-q-2}$$ with $n\;{\geq}\;q+2$ has and only has 2-degree integral subgraph of q-tree with n vertices and added-vertex q-tree with n vertices.

Chromatic Number Algorithm for Exam Scheduling Problem (시험 일정 계획 수립 문제에 관한 채색 수 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.111-117
    • /
    • 2015
  • The exam scheduling problem has been classified as nondeterministic polynomial time-complete (NP-complete) problem because of the polynomial time algorithm to obtain the exact solution has been unknown yet. Gu${\acute{e}}$ret et al. tries to obtain the solution using linear programming with $O(m^4)$ time complexity for this problem. On the other hand, this paper suggests chromatic number algorithm with O(m) time complexity. The proposed algorithm converts the original data to incompatibility matrix for modules and graph firstly. Then, this algorithm packs the minimum degree vertex (module) and not adjacent vertex to this vertex into the bin $B_i$ with color $C_i$ in order to exam within minimum time period and meet the incompatibility constraints. As a result of experiments, this algorithm reduces the $O(m^4)$ of linear programming to O(m) time complexity for exam scheduling problem, and gets the same solution with linear programming.

An Algorithm for the Edge Coloring Problem (호의 색칠문제의 해법)

  • Park, Sung-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.2
    • /
    • pp.43-49
    • /
    • 1992
  • Edge coloring problem is to find a minimum cardinality coloring of the edges of a graph so that any pair of edges incident to a common node do not have the same colors. Edge coloring problem is NP-hard, hence it is unlikely that there exists a polynomial time algorithm. We formulate the problem as a covering of the edges by matchings and find valid inequalities for the convex hull of feasible solutions. We show that adding the valid inequalities to the linear programming relaxation is enough to determine the minimum coloring number(chromatic index). We also propose a method to use the valid inequalities as cutting planes and do the branch and bound search implicitly. An example is given to show how the method works.

  • PDF

A Polynomial Time Algorithm for Vertex Coloring Problem (정점 색칠 문제의 다항시간 알고리즘)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.85-93
    • /
    • 2011
  • The Vertex Coloring Problem hasn't been solved in polynomial time, so this problem has been known as NP-complete. This paper suggests linear time algorithm for Vertex Coloring Problem (VCP). The proposed algorithm is based on assumption that we can't know a priori the minimum chromatic number ${\chi}(G)$=k for graph G=(V,E) This algorithm divides Vertices V of graph into two parts as independent sets $\overline{C}$ and cover set C, then assigns the color to $\overline{C}$. The element of independent sets $\overline{C}$ is a vertex ${\upsilon}$ that has minimum degree ${\delta}(G)$ and the elements of cover set C are the vertices ${\upsilon}$ that is adjacent to ${\upsilon}$. The reduced graph is divided into independent sets $\overline{C}$ and cover set C again until no edge is in a cover set C. As a result of experiments, this algorithm finds the ${\chi}(G)$=k perfectly for 26 Graphs that shows the number of selecting ${\upsilon}$ is less than the number of vertices n.

A Polynomial Time Algorithm for Edge Coloring Problem (간선 색칠 문제의 다항시간 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.159-165
    • /
    • 2013
  • This paper proposes a O(E) polynomial-time algorithm that has been devised to simultaneously solve edge-coloring problem and graph classification problem both of which remain NP-complete. The proposed algorithm selects an edge connecting maximum and minimum degree vertices so as to determine the number of edge coloring ${\chi}^{\prime}(G)$. Determined ${\chi}^{\prime}(G)$ is in turn either ${\Delta}(G)$ or ${\Delta}(G)+1$. Eventually, the result could be classified as class 1 if ${\chi}^{\prime}(G)={\Delta}(G)$ and as category 2 if ${\chi}^{\prime}(G)={\Delta}(G)+1$. This paper also proves Vizing's planar graph conjecture, which states that 'all simple, planar graphs with maximum degree six or seven are of class one, closing the remaining possible case', which has known to be NP-complete.

Error Compensation Algorithm for Higher Surface Accuracy of Freeform Mirrors Based On the Method of Least Squares

  • Jeong, Byeongjoon;Pak, Soojong;Kim, Sanghyuk;Lee, Kwang Jo;Chang, Seunghyuk;Kim, Geon Hee;Hyun, Sangwon;Jeon, Min Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.40.1-40.1
    • /
    • 2015
  • Off-axis reflective optical systems have attractive advantages relative to their on-axis or refractive counterparts, for example, zero chromatic aberration, no obstruction, and a wide field of view. For the efficient operation of off-axis reflective system, the surface accuracy of freeform mirrors should be higher than the order of wavelengths at which the reflective optical systems operate. Especially for applications in shorter wavelength regions, such as visible and ultraviolet, higher surface accuracy of freeform mirrors is required to minimize the light scattering. In this work, we propose the error compensation algorithm (ECA) for the correction of wavefront errors on freeform mirrors. The ECA converts a form error pattern into polynomial expression by fitting a least square method. The error pattern is measured by using an ultra-high accurate 3-D profilometer (UA3P, Panasonic Corp.). The measured data are fitted by two fitting models: Sag (Delta Z) data model and form (Z) data model. To evaluate fitting accuracy of these models, we compared the fitted error patterns with the measured error pattern.

  • PDF