DOI QR코드

DOI QR Code

A Polynomial Time Algorithm for Edge Coloring Problem

간선 색칠 문제의 다항시간 알고리즘

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 멀티미디어공학과)
  • Received : 2013.06.23
  • Accepted : 2013.09.24
  • Published : 2013.11.29

Abstract

This paper proposes a O(E) polynomial-time algorithm that has been devised to simultaneously solve edge-coloring problem and graph classification problem both of which remain NP-complete. The proposed algorithm selects an edge connecting maximum and minimum degree vertices so as to determine the number of edge coloring ${\chi}^{\prime}(G)$. Determined ${\chi}^{\prime}(G)$ is in turn either ${\Delta}(G)$ or ${\Delta}(G)+1$. Eventually, the result could be classified as class 1 if ${\chi}^{\prime}(G)={\Delta}(G)$ and as category 2 if ${\chi}^{\prime}(G)={\Delta}(G)+1$. This paper also proves Vizing's planar graph conjecture, which states that 'all simple, planar graphs with maximum degree six or seven are of class one, closing the remaining possible case', which has known to be NP-complete.

본 논문은 NP-완전 문제인 간선 색칠과 그래프 부류 결정 문제를 동시에 해결하는 O(E)의 다항시간 알고리즘을 제안하였다. 제안된 알고리즘은 최대차수-최소차수 정점 쌍 간선을 단순히 선택하는 방법으로 간선 채색수 ${\chi}^{\prime}(G)$를 결정하였다. 결정된 ${\chi}^{\prime}(G)$${\Delta}(G)$ 또는 ${\Delta}(G)+1$을 얻는다. 결국, 알고리즘 수행 결과 얻은 ${\chi}^{\prime}(G)$로부터 ${\chi}^{\prime}(G)={\Delta}(G)$이면 부류 1, ${\chi}^{\prime}(G)={\Delta}(G)+1$이면 부류 2로 분류할 수 있다. 또한, 미해결 문제로 알려진 "최대차수가 6인 단순, 평면 그래프는 부류 1이다."라는 Vizing의 평면 그래프 추정도 증명하였다.

Keywords

References

  1. Wikipedia, "Graph Coloring," http://en.wikipedia.org/wiki/Graph_Coloring,Wikimedia Foundation Inc., 2013.
  2. Wikipedia, "Edge Coloring," http://en.wikipedia.org/wiki/Edge_coloring,Wikimedia Foundation Inc., 2013.
  3. Wikipedia, "Total Coloring," http://en.wikipedia.org/wiki/Total_coloring,Wikimedia Foundation Inc., 2013.
  4. Wikipedia, "Degree (Graph Theory)," http://en.wikipedia.org/wiki/Degree_(graph-theory), Wikimedia Foundation Inc., 2013.
  5. E. Weisstein, "Class 1 Graph," http://mathworld.wolfram.com/Class 1 graph, Wolfram Research Inc., 2013.
  6. E. Weisstein, "Class 2 Graph," http://mathworld.wolfram.com/Class 2 graph, Wolfram Research Inc., 2013.
  7. V. G. Vizing, "Critical Graphs with Given Chromatic Class," Metody Diskret. Analiz., Vol. 5, pp. 9-17, 1965.
  8. D. P. Sanders and Y. Zhao, "Planar Graphs of Maximum Degree Seven are Class I," Journal of Combinatorial Theory Series B, Vol. 83, No. 2, pp. 201-212, 2001. https://doi.org/10.1006/jctb.2001.2047
  9. S. U. Lee and M. B. Choi, "A Polynomial (P) Algorithm for Vertex Coloring (Chromatic Number) Problem," Journal of the Korea Society of Computer and Information, Vol. 16, No. 7, pp. 85-93, Jun, 2011. https://doi.org/10.9708/jksci.2011.16.7.085
  10. S. U. Lee, "The Four Color Algorithm," Journal of the Korea Society of Computer and Information, Vol. 18, No. 5, pp. 113-120, May, 2013. https://doi.org/10.9708/jksci.2013.18.5.113
  11. Wikipedia, "Minimum Spanning Tree," http://en.wikipedia.org/wiki/Minimum_spanning_tree, Wikimedia Foundation Inc., 2013.
  12. R. Machado and C. M. H. de Figueiredo, "A Decomposition for Total-coloring Graphs of Maximum Degree 2," Cologne-Twente Workshop, 2008.
  13. Wikipedia, "Peterson Graph," http://en.wikipedia.org/wiki/Peterson_graph,Wikimedia Foundation Inc., 2013.
  14. E. Weisstein, "Complete Graph," http://mathworld.wolfram.com/Complete graph, Wolfram Research Inc., 2013.

Cited by

  1. 평면의 채색수 알고리즘 vol.19, pp.5, 2013, https://doi.org/10.9708/jksci.2014.19.5.019