Korean J. Math. 16 (2008), No. 3, pp. 425437

COMBINATORIAL PROOF FOR e-POSITIVITY OF THE
POSET OF RANK 1

JAEJIN LEE

ABSTRACT. Let P be a poset and G = G(P) be the incomparability
graph of P. Stanley [7] defined the chromatic symmetric function
X¢(p) which generalizes the chromatic polynomial x¢ of G, and
showed all coefficients are nonnegative in the e-expansion of X¢(p)
for a poset P of rank 1. In this paper, we construct a sign revers-
ing involution on the set of special rim hook P-tableaux with some
conditions. It gives a combinatorial proof for (3+1)-free conjecture
of a poset P of rank 1.

1. Introduction

Let G be a simple graph with d vertices. In [7], Stanley defined a
homogeneous symmetric function Xg of degree d which generalizes the
chromatic polynomial yg of G. Let P be a poset and G(P) be the
incomparability graph of P. Then the symmetric function X¢(p) can be
expanded in terms of various symmetric function bases. In particular, if
we use the elementary symmetric function basis {e, }, we have

XG(p) = Z Crlp-
i

Through their work on immanants of Jacobi-Trudi matrices, Stanley and
Stembridge [9] were led to the following conjecture.
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CONJECTURE 1.1 ((3+1)-free conjecture). If P is a (3+1)-free poset,
Xq(p) Is e-positive, i.e., if

Xeawp) = Z CrCus
o

then all ¢, > 0.

Using the acyclic orientation of the incomparability graph G(P) of
P, Stanley [7] proved that (3+1)-free conjecture is true for a poset P of
rank 1.

On the other hand, Egecioglu and Remmel [2] gave a combinatorial in-
terpretation for the entries of the inverse of Kostka matrix and Chow [1]
used Egecioglu and Remmel’s interpretation to get a combinatorial ob-
ject for ¢, appeared in Conjecture 1.1.

Using Chow’s combinatorial object for c¢,, we construct a sign re-
versing involution on the set of special rim hook P-tableaux with some
conditions. It gives a combinatorial proof for (3+1)-free conjecture of a
poset P of rank 1. In Section 2 we describe basic definitions from the
theory of Young tableaux. A sign reversing involution to prove the main
result with an example is given in Section 3.

2. Definitions and combinatorial interpretation for K, }\

In this section we describe some definitions necessary for later. See
[3], [6] or [8] for definitions and notations not described here.

DEFINITION 2.1. A partition A of a positive integer n is a sequence
of positive integers A = (A1, Aa, ..., Ay) such that

() A > o> > A >0,

(il) S N =n.
We write A = n, or |\| = n. We say each term \; is a part of A and
the number of nonzero parts is called the length of A and is written
¢ = /¢()\). In addition, we will use the notation A = (1™,2™2 ... n"")
which means that the integer j appears m; times in A.

DEFINITION 2.2. Let A = (Aq,..., ;) be a partition. The Ferrers
diagram D, of X\ is the array of cells or boxes arranged in rows and
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columns, A; in the first row, Ay in the second row, etc., with each row
left-justified. That is,

Dy={(i,j) € Z*|1<i<l(\),1<j<\}

where we regard the elements of D) as a collection of boxes in the plane
with matrix-style coordinates.

DEFINITION 2.3. If A, p1 are partitions with Dy 2 D,,, the skew shape
Dy, or just A\/pu is defined as the set-theoretic difference D)y \ D,. Thus

Dy ={06,5) € Z2 | 1 <i <L), i < j < N}

Figure 2.1 shows the Ferrers diagram D) and skew shape D)/, re-
spectively, when A = (5,4,2,1) F 12 and p = (2,2,1) - 5.

Figure 2.1

DEFINITION 2.4. Let A be a partition. A tableau T of shape X is an
assignment 1" : D) — P of positive integers to the cells of \. The content
of the tableau T', denoted by content(7'), is the finite nonnegative vector
whose ith component is the number of entries ¢ in 7.

A tableau T of shape A is said to be column strict if it satisfies the
following two conditions:

(i) T(i,j) < T(i,j+1), ie., the entries increase weakly along the rows
of A from left to right.

(ii) T(i,5) < T(i + 1,7), i.e., the entries increase strictly along the
columns of A from top to bottom.

In Figure 2.2, T is a tableau of shape (5,4,2,1) and S is a column
strict tableau of shape (5,4,2,1) and of content (3,3,1,2,2,1).
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Figure 2.2

DEFINITION 2.5. For partitions A and g such that |\ = ||, the
Kostka number K , is the number of column strict tableaux of shape \
and content .

If we use the reverse lexicographic order on the set of partitions of a
fixed positive integer n, the Kostka matriz K = (K ,) becomes upper
unitriangular so that K is non-singular.

DEFINITION 2.6. A 7im hook H is a skew shape which is connected
and contains no 2 x 2 square of cells. The size of H is the number of
cells it contains. The leg length of rim hook H, ¢(H), is the number of
vertical edges in H when viewed as in Figure 2.3. We define the sign of
a rim hook H to be e(H) = (—1)“H).

Figure 2.3 shows the rim hook H of size 6 with {(H) = 2 and ¢(H) =
(—-1)?=1.

Figure 2.3

DEFINITION 2.7. A rim hook tableau T of shape X is a partition
of the diagram of A\ into rim hooks. The type of T is type(T) =
(1 2m2 .. n™) where my is the number of rim hooks in 7' of size
k. We now define the sign of a rim hook tableau T as

e(T) = [ e(H).

A rim hook tableau S is called special if each of the rim hooks contains
a cell from the first column of \. We use nodes for the Ferrers diagram
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and connect them if they are adjacent in the same rim hook as S in
Figure 2.4.

—eo
111 ]11(3|3
1121215
T: S:
212
4
Figure 2.4

In Figure 2.4, T is a rim hook tableau of shape (5,4,2,1), type(T') =
(12,2,4%) and €(T) = (=1)* - (=)' - (=1)°- (=1)°- (=1)° = 1, while S is
a special rim hook tableau with shape (5,3,2,1,1), type(S) = (2,4, 6)
and €(S) = (=1)°- (=1)} - (=1)? = —1.

We can now state Egecioglu and Remmel’s interpretation for the en-
tries of the inverse of Kostka matrix.

THEOREM 2.8 (Egecioglu and Remmel[2]). The entries of the inverse
Kostka matrix are given by

K.\ =) €S)

where the sum is over all special rim hook tableaux S with shape A and
type . O

3. A sign reversing involution

We begin with Stanley’s chromatic symmetric functions in this sec-
tion.

DEFINITION 3.1. Let G = G(V, E) be a graph with a finite set of
vertices V' and edges E. A proper coloring of GG is a function k : V — P
such that uv € E implies k(u) # x(v). Now consider a countably infinite
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set of variables x = {x1, x9,...}. The chromatic symmetric function X¢
associated with a graph G is a formal power series

XG — XG(X) — Z xn(vl)xn(vg) e In(vn)

Kk:V—P
where k is a proper coloring.

Note that if one sets xr1 =29 = ... =z, = 1 and z; = 0 for 7 > n,
denoted x = 1", then X reduces to the number of proper colorings of G
from a set with n elements. So under this substitution, X (1") = x¢(n)
where x(n) is the chromatic polynomial of Whitney [10]. Also, because
permuting the colors of a proper coloring keeps the coloring proper,
X¢(x) is a symmetric function in x over the rationals. In [7], Stanley
derived many interesting properties of the chromatic symmetric function
Xg(x) some of which generalize those of the chromatic polynomial.

DEFINITION 3.2. Let (P, <) be a finite partially ordered set(poset).
We say that P is (a+b)-free if it contains no induced subposet isomor-
phic to a disjoint union of an a-element chain and a b-element chain.
Also, given any poset P, incomparability graph G(P) of P is a graph
having vertices V' = P and an edge between u and v in G(P) if and only
if u and v are incomparable in P.

Figure 3.1 shows a poset P and its incomparability graph G(P).

c d c d

pP= G(P) =

Figure 3.1

Although (341)-free conjecture introduced in Section 1 still remains
open, a weak result proved by Gasharov [4]. He gave a combinatorial
interpretation to the coefficients in the s-expansion of Xg(p) and proved
that if P is (341)-free then X¢(py is s-positive, where s, is the Schur
function corresponding to .

DEFINITION 3.3. Let P be a poset. A P-tableau T of shape X\ is a
bijection Dy — P such that for all (,j) € \:
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(1) Ty < Ty, and

(ii) Tij # Tijyr,
where a condition is considered vacuously true if subscripts refer to a
cell outside of A\. We denote the number of P-tableaux of shape A by

13-
Note that when P is a chain, then a P-tableau is just a standard

Young tableau and fp = f*. Figure 3.2 shows all P-tableaux of shape
A =(3,1) when P is a poset given in Figure 3.1.

a b d b a d b d a b a c
c c c d
Figure 3.2

Using P-tableaux, Gasharov proved the following result which imme-
diately implies s-positivity of Xq(p), where P is a (341)-free poset.

THEOREM 3.4 (Gasharov [4]). If P is (3+1)-free then
(1) Xawpy =Y [psx
y

where X' is the conjugate of \. ]

Chow [1] pointed out that (1) could be combined with Egecioglu and
Remmel’s result to obtain a combinatorial interpretation of the coeffi-
cients ¢, in Conjecture 1.1. First note that the change of basis matrix
between the Schur and elementary symmetric functions is

sv =2 K e
m
Combining this with (1) we get
Xor) = D) K, \fpen
A
Since the e, are a basis, we have
TED L
A

Finally we apply Theorem 2.8 to get the desired interpretation.
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COROLLARY 3.5 (Chow [1]). Let P be a finite poset and let
X(;(p) = Zcueu.
m

Then, the coefficients c,, satisfy

= €S)

(5.T)

where the sum is over all pairs of a special rim hook tableau S of type
w and a P-tableau T with the same shape as S. O

Note that a column of a P-tableau 7" must be a chain in P and the
number of rim hooks in S is at most the length of its first column because
they are special. So the previous corollary implies that ¢, = 0 whenever
i has more parts than the height of P, h(P) (which is defined as the
number of elements in the longest chain of P).

To present pairs (S,T") described in Corollary 3.5 economically, we
will combine each pair (S,7T) into a single tableau Sr, called special
rim hook P-tableau, with elements in the same places as in T" and edges
between pairs of elements which are adjacent in a hook of S. See Figure
3.3 for an example of special rim hook P-tableau.

° a e h a ?*h
._I_. b c—b

c
(S,T) = d i e Sr= (‘i* i
¢ P
f f
Figure 3.3

Using special rim hook P-tableaux Corollary 3.5 can be rewritten as
follows.

COROLLARY 3.6. Let P be a finite poset. Then the coefficients c, in
the e-expansion of X (P) are

Cy = Z e(.S)
S
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where the sum is over all special rim hook P-tableaux S of type p. [J

We can now state the main result and give a sign reversing involution
to prove it.

THEOREM 3.7. Let P be a poset with n elements of rank 1. Then

D ()
S

is non-negative, where the sum is over all special rim hook P-tableaux
S of type pu F n.

Proof. Let 11 be a fixed partition of n and I', be the set of all special
rim hook P-tableaux of type pu. We divide the set I', into two disjoint
subsets F;r and I' | as follows.

F::{SGFMG(S):l}
I, ={Sel,|eS)=~-1}
Note that P cannot have a chain of three elements and a column of
a P-tableau T" in I', must be a chain in P. This fact implies that the
shape of T" has at most two rows, and the number of rim hooks in 7" is
at most two because it is special. This means that either y = (n') or
p=(rt,s') with r > s.
Suppose first g = (n'). Since T contains only one rim hook, T is a
special rim hook P-tableaux of form

bi— by — buos
a;— Qg — - — Ap—1— Ap or \
bn
Define
ap— Qg — -+ — Qp_1— a,, ifa; £ ay,
ay— Qz— " — Qp-1
I(ag—ag— - — Gpy—ay) = .
| otherwise
Qn,
and
by —by— " — b
I | :blbe*"'*bn—lfbn
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If b,_1 > b, in the above, {b1,b,,b,_1} forms a chain of three elements
in P. Hence we have b, # b, and I is well-defined on I',,.

Suppose now p = (r!, s') with r > s. Since there are two rim hooks
in each P-tableau in I, such tableau is of form

T, — a1 — Qg —* —Qs—1— Qs — Qg1 —" " — Qy
e bl*b2*"'*bs—1*bs
or
Ci—C— ++ —Cs—1 —Cg ds+2 **dr
Ty = |
di—dy o dey o dy d
Define
Ty if a, .
iy = {7 o £
T3  otherwise
and
I(T2)2T4
where
ay—ay—:+++ —0g—1—0ag Agq41—" " — Ar_1
T3 = |
blbe*"'*bsflfbs*ar
and
T, — 1 —C— = Cs—dgpg— —dp—ds
YT A dy— e,

If d. > dgy1 or by > a, > asyq in the above, P contains a chain of
three elements {ds 2, ds11,d,} or {asy1,a,,bs}. Thus we have d, # dsyq,
bs # a, and I is well-defined.

In either case, we can check easily that [ is a sign reversing involution
onI'y,ie., ITol =1p, and

1 itser,,
€(I(5))=q -1 ifSel} and I(S)#S
1 if Sel) and I(S) = S.
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Class | shape type sign +# of special rim
hook P-tableaux
I (5) (5) 1 42
II (4,1) (5) -1 12
Ir | (4,1) (4,1) 1 12
IV | (3,2) (3,2) 1 6
\Y (3,2) (4,1) -1 6
TABLE 1

Using the above involution I, we finally have
D)= e(S)= > ) =0
s Sely Sery, 1(8)=S
which immediately implies our theorem. O]

Combining Corollary 3.6 and Theorem 3.7, we get the following facts.

COROLLARY 3.8 (Stanley|[7]). Let P be a finite poset of rank 1. For
any partition yu, the coefficient c, of e, in the e-expansion of Xqp) is
non-negative. 0

ExAMPLE 3.9. Consider the poset P as in Figure 3.4.

Figure 3.4

Then there are 78 special rim hook P-tableaux. Table 1 shows all pos-
sible shapes and types of special rim hook P-tableaux, and the number
of special rim hook P-tableaux with given shape and type. Examples
of a special rim hook P-tableaux contained in each class of Table 1 are
given in Figure 3.5.
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Class I: a—b—c—d—e ClassIV: a—b—c¢
d—e

Class II: a—b—c—e Class V: a b—c
! a—b

Class III: a—b—c—e

Figure 3.5

Each special rim hook P-tableaux in Class II is matched to just one
of tableaux in Class I, and each special rim hook P-tableaux in Class V
is matched to one in Class III as follows;

a—b—c—e S o a—b—c—e—d
4
b—c¢ < a—b—c—e
! d
Figure 3.6

30 unmatched tableaux in Class I, 6 unmatched tableaux in Class
IIT and 6 unmatched tableaux in Class IV are fixed by the involution I
described in Theorem 3.7. Hence, we have

Xe(p) = 30e(5) + 6e(q,1) + 6es 2).
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