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COMBINATORIAL PROOF FOR e-POSITIVITY OF THE

POSET OF RANK 1

Jaejin Lee

Abstract. Let P be a poset and G = G(P ) be the incomparability
graph of P . Stanley [7] defined the chromatic symmetric function
XG(P ) which generalizes the chromatic polynomial χG of G, and
showed all coefficients are nonnegative in the e-expansion of XG(P )

for a poset P of rank 1. In this paper, we construct a sign revers-
ing involution on the set of special rim hook P -tableaux with some
conditions. It gives a combinatorial proof for (3+1)-free conjecture
of a poset P of rank 1.

1. Introduction

Let G be a simple graph with d vertices. In [7], Stanley defined a
homogeneous symmetric function XG of degree d which generalizes the
chromatic polynomial χG of G. Let P be a poset and G(P ) be the
incomparability graph of P . Then the symmetric function XG(P ) can be
expanded in terms of various symmetric function bases. In particular, if
we use the elementary symmetric function basis {eµ}, we have

XG(P ) =
∑

µ

cµeµ.

Through their work on immanants of Jacobi-Trudi matrices, Stanley and
Stembridge [9] were led to the following conjecture.
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Conjecture 1.1 ((3+1)-free conjecture). If P is a (3+1)-free poset,
XG(P ) is e-positive, i.e., if

XG(P ) =
∑

µ

cµeµ,

then all cµ ≥ 0.

Using the acyclic orientation of the incomparability graph G(P ) of
P , Stanley [7] proved that (3+1)-free conjecture is true for a poset P of
rank 1.

On the other hand, Eğecioğlu and Remmel [2] gave a combinatorial in-
terpretation for the entries of the inverse of Kostka matrix and Chow [1]
used Eğecioğlu and Remmel’s interpretation to get a combinatorial ob-
ject for cµ appeared in Conjecture 1.1.

Using Chow’s combinatorial object for cµ, we construct a sign re-
versing involution on the set of special rim hook P -tableaux with some
conditions. It gives a combinatorial proof for (3+1)-free conjecture of a
poset P of rank 1. In Section 2 we describe basic definitions from the
theory of Young tableaux. A sign reversing involution to prove the main
result with an example is given in Section 3.

2. Definitions and combinatorial interpretation for K−1
µ,λ

In this section we describe some definitions necessary for later. See
[3], [6] or [8] for definitions and notations not described here.

Definition 2.1. A partition λ of a positive integer n is a sequence
of positive integers λ = (λ1, λ2, . . . , λ`) such that

(i) λ1 ≥ λ2 ≥ · · · ≥ λ` > 0,

(ii)
∑`

i=1 λi = n.

We write λ ` n, or |λ| = n. We say each term λi is a part of λ and
the number of nonzero parts is called the length of λ and is written
` = `(λ). In addition, we will use the notation λ = (1m1 , 2m2 , . . . , nmn)
which means that the integer j appears mj times in λ.

Definition 2.2. Let λ = (λ1, . . . , λ`) be a partition. The Ferrers
diagram Dλ of λ is the array of cells or boxes arranged in rows and
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columns, λ1 in the first row, λ2 in the second row, etc., with each row
left-justified. That is,

Dλ = {(i, j) ∈ Z2 | 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi},

where we regard the elements of Dλ as a collection of boxes in the plane
with matrix-style coordinates.

Definition 2.3. If λ, µ are partitions with Dλ ⊇ Dµ, the skew shape
Dλ/µ or just λ/µ is defined as the set-theoretic difference Dλ \Dµ. Thus

Dλ/µ = {(i, j) ∈ Z2 | 1 ≤ i ≤ `(λ), µi < j ≤ λi}.

Figure 2.1 shows the Ferrers diagram Dλ and skew shape Dλ/µ, re-
spectively, when λ = (5, 4, 2, 1) ` 12 and µ = (2, 2, 1) ` 5.

Dλ = Dλ/µ =

Figure 2.1

Definition 2.4. Let λ be a partition. A tableau T of shape λ is an
assignment T : Dλ → P of positive integers to the cells of λ. The content
of the tableau T , denoted by content(T ), is the finite nonnegative vector
whose ith component is the number of entries i in T .

A tableau T of shape λ is said to be column strict if it satisfies the
following two conditions:

(i) T (i, j) ≤ T (i, j +1), i.e., the entries increase weakly along the rows
of λ from left to right.

(ii) T (i, j) < T (i + 1, j), i.e., the entries increase strictly along the
columns of λ from top to bottom.

In Figure 2.2, T is a tableau of shape (5, 4, 2, 1) and S is a column
strict tableau of shape (5, 4, 2, 1) and of content (3, 3, 1, 2, 2, 1).
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Figure 2.2

Definition 2.5. For partitions λ and µ such that |λ| = |µ|, the
Kostka number Kλ,µ is the number of column strict tableaux of shape λ
and content µ.

If we use the reverse lexicographic order on the set of partitions of a
fixed positive integer n, the Kostka matrix K = (Kλ,µ) becomes upper
unitriangular so that K is non-singular.

Definition 2.6. A rim hook H is a skew shape which is connected
and contains no 2 × 2 square of cells. The size of H is the number of
cells it contains. The leg length of rim hook H, `(H), is the number of
vertical edges in H when viewed as in Figure 2.3. We define the sign of
a rim hook H to be ε(H) = (−1)`(H).

Figure 2.3 shows the rim hook H of size 6 with `(H) = 2 and ε(H) =
(−1)2 = 1.

H = uu uu u u

Figure 2.3

Definition 2.7. A rim hook tableau T of shape λ is a partition
of the diagram of λ into rim hooks. The type of T is type(T ) =
(1m1 , 2m2 , . . . , nmn) where mk is the number of rim hooks in T of size
k. We now define the sign of a rim hook tableau T as

ε(T ) =
∏
H∈T

ε(H).

A rim hook tableau S is called special if each of the rim hooks contains
a cell from the first column of λ. We use nodes for the Ferrers diagram
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and connect them if they are adjacent in the same rim hook as S in
Figure 2.4.
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uu
u uuu u uu u u u

Figure 2.4

In Figure 2.4, T is a rim hook tableau of shape (5, 4, 2, 1), type(T ) =
(12, 2, 42) and ε(T ) = (−1)1 · (−1)1 · (−1)0 · (−1)0 · (−1)0 = 1, while S is
a special rim hook tableau with shape (5, 3, 2, 1, 1), type(S) = (2, 4, 6)
and ε(S) = (−1)0 · (−1)1 · (−1)2 = −1.

We can now state Eğecioğlu and Remmel’s interpretation for the en-
tries of the inverse of Kostka matrix.

Theorem 2.8 (Eğecioğlu and Remmel[2]). The entries of the inverse
Kostka matrix are given by

K−1
µ,λ =

∑
S

ε(S)

where the sum is over all special rim hook tableaux S with shape λ and
type µ.

3. A sign reversing involution

We begin with Stanley’s chromatic symmetric functions in this sec-
tion.

Definition 3.1. Let G = G(V, E) be a graph with a finite set of
vertices V and edges E. A proper coloring of G is a function κ : V → P
such that uv ∈ E implies κ(u) 6= κ(v). Now consider a countably infinite
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set of variables x = {x1, x2, . . .}. The chromatic symmetric function XG

associated with a graph G is a formal power series

XG = XG(x) =
∑

κ:V→P

xκ(v1)xκ(v2) · · ·xκ(vn)

where κ is a proper coloring.

Note that if one sets x1 = x2 = . . . = xn = 1 and xi = 0 for i > n,
denoted x = 1n, then XG reduces to the number of proper colorings of G
from a set with n elements. So under this substitution, XG(1n) = χG(n)
where χG(n) is the chromatic polynomial of Whitney [10]. Also, because
permuting the colors of a proper coloring keeps the coloring proper,
XG(x) is a symmetric function in x over the rationals. In [7], Stanley
derived many interesting properties of the chromatic symmetric function
XG(x) some of which generalize those of the chromatic polynomial.

Definition 3.2. Let (P,≤) be a finite partially ordered set(poset).
We say that P is (a+b)-free if it contains no induced subposet isomor-
phic to a disjoint union of an a-element chain and a b-element chain.
Also, given any poset P , incomparability graph G(P ) of P is a graph
having vertices V = P and an edge between u and v in G(P ) if and only
if u and v are incomparable in P .

Figure 3.1 shows a poset P and its incomparability graph G(P ).

P = u
a

u
b

uc ud
@

@
@

@

G(P ) =

a b

c d
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�

�
�

u
u

u
u

Figure 3.1

Although (3+1)-free conjecture introduced in Section 1 still remains
open, a weak result proved by Gasharov [4]. He gave a combinatorial
interpretation to the coefficients in the s-expansion of XG(P ) and proved
that if P is (3+1)-free then XG(P ) is s-positive, where sλ is the Schur
function corresponding to λ.

Definition 3.3. Let P be a poset. A P -tableau T of shape λ is a
bijection Dλ → P such that for all (i, j) ∈ λ:
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(i) Ti,j < Ti+1,j, and
(ii) Ti,j 6> Ti,j+1,

where a condition is considered vacuously true if subscripts refer to a
cell outside of λ. We denote the number of P -tableaux of shape λ by
fλ

P .

Note that when P is a chain, then a P -tableau is just a standard
Young tableau and fλ

P = fλ. Figure 3.2 shows all P -tableaux of shape
λ = (3, 1) when P is a poset given in Figure 3.1.

a b d
c

b a d
c

b d a
c

b a c
d

Figure 3.2

Using P -tableaux, Gasharov proved the following result which imme-
diately implies s-positivity of XG(P ), where P is a (3+1)-free poset.

Theorem 3.4 (Gasharov [4]). If P is (3+1)-free then

(1) XG(P ) =
∑

λ

fλ
P sλ′

where λ′ is the conjugate of λ.

Chow [1] pointed out that (1) could be combined with Eğecioğlu and
Remmel’s result to obtain a combinatorial interpretation of the coeffi-
cients cµ in Conjecture 1.1. First note that the change of basis matrix
between the Schur and elementary symmetric functions is

sλ′ =
∑

µ

K−1
µ,λeµ

Combining this with (1) we get

XG(P ) =
∑
λ,µ

K−1
µ,λf

λ
P eµ.

Since the eµ are a basis, we have

cµ =
∑

λ

K−1
µ,λf

λ
P .

Finally we apply Theorem 2.8 to get the desired interpretation.
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Corollary 3.5 (Chow [1]). Let P be a finite poset and let

XG(P ) =
∑

µ

cµeµ.

Then, the coefficients cµ satisfy

cµ =
∑
(S,T )

ε(S)

where the sum is over all pairs of a special rim hook tableau S of type
µ and a P -tableau T with the same shape as S.

Note that a column of a P -tableau T must be a chain in P and the
number of rim hooks in S is at most the length of its first column because
they are special. So the previous corollary implies that cµ = 0 whenever
µ has more parts than the height of P , h(P ) (which is defined as the
number of elements in the longest chain of P ).

To present pairs (S, T ) described in Corollary 3.5 economically, we
will combine each pair (S, T ) into a single tableau ST , called special
rim hook P -tableau, with elements in the same places as in T and edges
between pairs of elements which are adjacent in a hook of S. See Figure
3.3 for an example of special rim hook P -tableau.

(S, T ) = ST =

uu
uu
u

uu
u u
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Figure 3.3

Using special rim hook P -tableaux Corollary 3.5 can be rewritten as
follows.

Corollary 3.6. Let P be a finite poset. Then the coefficients cµ in
the e-expansion of XG(P ) are

cµ =
∑

S

ε(S)
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where the sum is over all special rim hook P -tableaux S of type µ.

We can now state the main result and give a sign reversing involution
to prove it.

Theorem 3.7. Let P be a poset with n elements of rank 1. Then∑
S

ε(S)

is non-negative, where the sum is over all special rim hook P -tableaux
S of type µ ` n.

Proof. Let µ be a fixed partition of n and Γµ be the set of all special
rim hook P -tableaux of type µ. We divide the set Γµ into two disjoint
subsets Γ+

µ and Γ−
µ as follows.

Γ+
µ = {S ∈ Γµ | ε(S) = 1 }

Γ−
µ = {S ∈ Γµ | ε(S) = −1 }

Note that P cannot have a chain of three elements and a column of
a P -tableau T in Γµ must be a chain in P . This fact implies that the
shape of T has at most two rows, and the number of rim hooks in T is
at most two because it is special. This means that either µ = (n1) or
µ = (r1, s1) with r ≥ s.

Suppose first µ = (n1). Since T contains only one rim hook, T is a
special rim hook P -tableaux of form

a1 — a2 — · · · — an−1 — an or
b1 — b2 — · · · — bn−1

|

bn

Define

I
(
a1 — a2 — · · · — an−1 — an

)
=


a1 — a2 — · · · — an−1 — an if a1 6< an

a1 — a2 — · · · — an−1

|

an

otherwise

and

I

b1 — b2 — · · · — bn−1

|

bn

 = b1 — b2 — · · · — bn−1 — bn
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If bn−1 > bn in the above, {b1, bn, bn−1} forms a chain of three elements
in P . Hence we have bn−1 6> bn and I is well-defined on Γµ.

Suppose now µ = (r1, s1) with r ≥ s. Since there are two rim hooks
in each P -tableau in Γµ, such tableau is of form

T1 =
a1 — a2 — · · · — as−1 — as — as+1 — · · · — ar

b1 — b2 — · · · — bs−1 — bs

or

T2 =
c1 — c2 — · · · — cs−1 — cs ds+2 — · · · — dr

|

d1 — d2 — · · · — ds−1 — ds — ds+1

Define

I(T1) =

{
T1 if as+1 6< ar

T3 otherwise

and

I(T2) = T4

where

T3 =
a1 — a2 — · · · — as−1 — as as+1 — · · · — ar−1

|

b1 — b2 — · · · — bs−1 — bs — ar

and

T4 =
c1 — c2 — · · · — cs — ds+2 — · · · — dr — ds+1

d1 — d2 — · · · — ds

If dr > ds+1 or bs > ar > as+1 in the above, P contains a chain of
three elements {ds+2, ds+1, dr} or {as+1, ar, bs}. Thus we have dr 6> ds+1,
bs 6> ar and I is well-defined.

In either case, we can check easily that I is a sign reversing involution
on Γµ, i.e., I ◦ I = 1Γµ and

ε(I(S)) =


1 if S ∈ Γ−

µ ,

−1 if S ∈ Γ+
µ and I(S) 6= S

1 if S ∈ Γ+
µ and I(S) = S.
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Class shape type sign # of special rim
hook P -tableaux

I (5) (5) 1 42
II (4, 1) (5) −1 12
III (4, 1) (4, 1) 1 12
IV (3, 2) (3, 2) 1 6
V (3, 2) (4, 1) −1 6

Table 1

Using the above involution I, we finally have∑
S

ε(S) =
∑
S∈Γµ

ε(S) =
∑

S∈Γ+
µ , I(S)=S

ε(S) ≥ 0

which immediately implies our theorem.

Combining Corollary 3.6 and Theorem 3.7, we get the following facts.

Corollary 3.8 (Stanley[7]). Let P be a finite poset of rank 1. For
any partition µ, the coefficient cµ of eµ in the e-expansion of XG(P ) is
non-negative.

Example 3.9. Consider the poset P as in Figure 3.4.
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Figure 3.4

Then there are 78 special rim hook P -tableaux. Table 1 shows all pos-
sible shapes and types of special rim hook P -tableaux, and the number
of special rim hook P -tableaux with given shape and type. Examples
of a special rim hook P -tableaux contained in each class of Table 1 are
given in Figure 3.5.
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Class I: a b c d e

Class II: a b c e

d

Class III: a b c e

d

Class IV: a b c

d e

Class V: a b c

d e

Figure 3.5

Each special rim hook P -tableaux in Class II is matched to just one
of tableaux in Class I, and each special rim hook P -tableaux in Class V
is matched to one in Class III as follows;

a b c e

d

⇐⇒ a b c e d

a b c

ed

⇐⇒ a b c e

d

Figure 3.6

30 unmatched tableaux in Class I, 6 unmatched tableaux in Class
III and 6 unmatched tableaux in Class IV are fixed by the involution I
described in Theorem 3.7. Hence, we have

XG(P ) = 30e(5) + 6e(4,1) + 6e(3,2).
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