• Title/Summary/Keyword: Channel Variation

Search Result 799, Processing Time 0.026 seconds

Direct Observation of Premixed Flame Propagation Characteristics in an Annular Coaxial 5-Tubes Burner (환형 5중 동축관 연소기 내부에서의 예혼합 화염의 전파 특성 직접 관찰)

  • Cho, Moon Soo;Baek, Da Bin;Kim, Nam Il
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.24-30
    • /
    • 2013
  • Flame stabilization characteristics of premixed flames in an annular coaxial 5-tubes burner (AC5TB) were investigated experimentally. The AC5TB was made of five quartz tubes, and the flame stabilization conditions in that burner were investigated with the variation of equivalence ratio and the flow velocities. Flame behaviors inside of narrow annular tubes could be observed directly. Overall flame stabilization conditions were similar to that of the previous study, while the flame behaviors and structures were different mainly due to the controlled uniform distribution of the velocities in channels. Flame flashback conditions were thought to be governed by the competition between heat release rate, heat loss and heat recirculation in each channel. Stationary flames at a fixed location were compared in its velocity distribution and burned gas temperature across the channel. This AC5TB can be a basic configuration for the development of flame stabilization model of porous media combustors, and it will help understand about the real behavior of flames in meso-scale combustion spaces.

Study on Analysis of Output Polarization of Lyot-Type High-Order Fiber Comb Filter Based on Polarization-Diversity Loop Structure (편광상이 고리 구조 기반 Lyot형 고차 광섬유 빗살 필터의 출력 편광 분석에 관한 연구)

  • Jo, Songhyun;Lee, Yong Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.17-24
    • /
    • 2015
  • In this paper, we investigated the output polarization of a Lyot-type optical fiber comb filter based on a polarization-diversity loop structure. It was found that the output state of polarization (SOP) of the filter made a wavelength-dependent evolution, and the spectral periods of the output SOP variation in flat-top and lossy flat-top band modes were the channel separation of the filter and its half, respectively. For a certain input SOP, the filter could pass or reject specific spectral sections by adding and controlling an output analyzer. In particular, it was theoretically anticipated that the filter with the output polarizer could provide the fine continuous tuning of its pass band center in a wavelength range corresponding to the ${\pm}9.5%$ of channel spacing(0.8nm) when the input SOP was properly adjusted. It is expected that this tuning function can be effectively applied to suppress unwanted spectral portions in modulated optical signals.

Analysis of Medium Voltage Power-Line Channel Characteristics Considering the Skin Effect (표피효과를 고려한 중전압 전력선 채널특성 분석)

  • 김선효;이원태;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.731-738
    • /
    • 2002
  • In this paper, we analyzed a medium voltage power line characteristics considering the skin effect for high speed data transmission. Medium power-line characteristics impedance was obtained by the S-parameter method which is used in high frequency band. Power line channel characteristics was measured using it designed coupler, it is a wide band coupler between medium powe-line and measurement system. Attenuation characteristics along the frequency was decreased linearly when skin effect was considered but attenuation characteristics along the frequency was decreased linearly when skin effect was not considered. Impedance was showed lower and lower in proportional to frequency, and variation was decreased in proportional to frequency.

Optimization study on fuel cell cathode oxygen flow path for Unmanned Aerial Vehicle using computational visualization (전산 가시화를 통한 무인 항공기용 연료전지 양극 산소 유로 최적화 연구)

  • Jeon, Ji-A;Lee, Jae-Jun;Song, Young-Su;Kim, Min-Su;Kim, Gun Woo;Na, Youngseung;Rhee, Gwang Hoon
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.85-92
    • /
    • 2019
  • Numerical visualization is conducted to confirm the variation of flow characteristics and pressure drop by the shape of channels on the cathode flow path in hydrogen fuel cells for unmanned aerial vehicles(UAVs). Generally, a light-weight fan is commonly used rather than a heavy air compressor at UAVS. However, in case of blower fan, a large pressure drop in the flow path causes the blocking of the oxygen supply to the fuel cell. Therefore, the uniformity of flow inside the cathode has to be achieved by changing the shape of the cathode. The flow channel, the duct shape, and the diameter of the fan are changed to optimize the flow path. As a result, it is confirmed that the optimal flow path can decrease the velocity difference between the center and outer flow by 1.8%. However, It should be noted that the channel size can increase the pressure drop.

Analysis of Three Dimensional Equal Chanel Angular Pressing by Using the Finite Element Method in Conjunction with the Dislocation Cell Based Constitutive Model (전위 셀 구성모델을 결합한 유한요소법을 이용한 3차원 등통로각압출 공정 해석)

  • Yoon, Seung Chae;Kim, Hyoung Seop
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.699-706
    • /
    • 2009
  • Deformation behavior of pure aluminum during equal channel angular pressing (ECAP) was simulated using a three-dimensional version of the finite element method in conjunction with a constitutive model based on the dislocation density and cell evolution. The three-dimensional finite element analyses for the prediction of microstructural features, such as the variation of the dislocation density and the cell size with the number of ECAP, are reported. The calculated stress and strain and their distributions are also investigated for the route Bc ECAP processed pure aluminum. The results of finite element analyses are found to be in good agreement with experimental results for the dislocation cell size. Due to the accumulation of strain throughout the workpiece and an overall trend to saturation in cell size, a decrease of the difference in cell size with the number of passes (1~4) was predicted.

Experimental and Simulation Study of PEMFC based on Ammonia Decomposition Gas as Fuel

  • Zhao, Jian Feng;Liang, Yi Fan;Liang, Qian Chaos;Li, Meng Jie;Hu, Jin Yi
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.63-70
    • /
    • 2022
  • Compared with hydrogen, ammonia has the advantages of high gravimetric hydrogen densities (17.8 wt.%), ease of storage and transportation as a chemical hydrogen storage medium, while its application in small-scale on-site hydrogen production scenarios is limited by the need for complex separation equipment during high purity hydrogen production. Therefore, the study of PEMFC, which can directly utilize ammonia decomposition gas, can greatly expand the application of fuel cells. In this paper, the output characteristics, fuel efficiency and the variation trend of hydrogen concentration and local current density in the anode channel of fuel cell with the output voltage of PEMFC fueled by ammonia decomposition gas were studied by experiment and simulation. The results indicate that the maximum output power of the hybrid fuel decreases by 9.6% compared with that of the pure hydrogen fuel at the same inlet hydrogen equivalent. When the molar concentration of hydrogen in the anode channel is less than 0.12, the output characteristics of PEMFC will be seriously affected. Employing ammonia decomposition gas as fuel, the efficiency corresponding to the maximum output power of PEMFC is approximately 47%, which is 10% lower than the maximum efficiency of pure hydrogen.

Study on Fluid Distribution in Slot-die Head Using CFD (CFD를 이용한 슬롯 다이 헤드 내부의 유체 분포 분석)

  • Yoo, Suho;Kim, Gieun;Shin, Youngkyun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.39-44
    • /
    • 2022
  • Using a CFD (computational fluid dynamics) simulation tool, we have offered a design guideline of a slot-die head having a simple T-shaped cavity through an analysis of the fluid dynamics in terms of cavity pressure and outlet velocity, which affect the uniformity of coated thin films. We have visualized the fluid flow with a transparent slot-die head where poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is injected. We have shown that the fluid dynamics inside the slot-die head depends sensitively on the cavity depth, cavity length, land length, and channel gap (i.e., shim thickness). Of those, the channel gap is the most critical parameter that determines the uniformity of the pressure and velocity distributions. A pressure drop inside the cavity is shown to be reduced with decreasing shim thickness. To quantify it, we have also calculated the coefficient of variation (CV). In accordance with Hagen-Poiseuille's laws and electron-hydraulic analogy, the CV value is decreased with increasing cavity depth, cavity length, and land length.

An Enhanced AGC Structure and P-SCH Detection Method for Initial Cell Search in 3GPP LTE FDD/TDD Dual Mode Downlink Receiver (3GPP LTE FDD/TDD 듀얼 모드 하향 링크 수신기의 초기 셀 탐색을 위한 개선된 AGC 구조 및 P-SCH 검출 기법)

  • Chung, Myung-Jin;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3C
    • /
    • pp.302-313
    • /
    • 2010
  • In this paper, we propose an enhanced AGC (Automatic Gain Control) structure and P-SCH detection method for initial cell search in 3GPP (3rdGenerationPartnershipProject) LTE (Long Term Evolution) FDD(Frequency Division Duplex) / TDD (Time Division Duplex) dual mode system. Since TDD frame structure consists of uplink subframe and downlink subframe, conventional AGC structure causes P-SCH detection performance degradation by increase of AGC variation due to signal power difference between uplink and downlink subframe. Also, P-SCH detection performance is degraded by distortion of P-SCH correlation characteristic in frequency offset and multipath fading channel environments. Therefore, we propose an AGC structure which can minimize P-SCH detection performance degradation with stable operation in 3GPP LTE TDD mode as well as FDD mode. Also we propose a P-SCH detection method which can reduce distortion of correlation chareteristics in frequency offset and multipath fading environments and obtain good P-SCH detection performance. Simulation results show that the proposed AGC structure and P-SCH detection method have stable AGC operation and excellent P-SCH detection performance for 3GPP LTE TDD / FDD dual mode downlink receiver in various channel environments.

A study on statistical characteristics of time-varying underwater acoustic communication channel influenced by surface roughness (수면 거칠기에 따른 수면 경로의 시변 통신채널 통계적 특성 분석)

  • In-Seong Hwang;Kang-Hoon Choi;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.491-499
    • /
    • 2023
  • Scattering by Sea surface roughness occurs due to sea level roughness, communication performance deteriorates by causing frequency spread in communication signals and time variation in communication channels. In order to compare the difference in time variation of underwater acoustic communication channel according to the surface roughness, an experiment was performed in a tank owned by Hanyang University Ocean Acoustics Lab. Artificial surface roughness was created in the tank and communication signals with three bandwidths were used (8 kHz, 16 kHz, 32 kHz). The measured surface roughness was converted into a Rayleigh parameter and used as a roughness parameter, and statistical analysis was performed on the time-varying channel characteristics of the surface path using Doppler spread and correlation time. For the Doppler spread of the surface path, the Weighted Root Mean Square Doppler spread (wfσν) that corrected the effect of the carrier frequency and bandwidth of the communication signal was used. Using the correlation time of the surface path and the energy ratio of the direct path and the surface path, the correlation of total channels was simulated and compared with the measured correlation time of total channels. In this study, we propose a method for efficient communication signal design in an arbitrary marine environment by using the time-varying characteristics of the sea surface path according to the sea surface roughness.

A study of flow oscillations in a upright heated pipe (직립전열관에서의 유체진동에 관한 연구)

  • 박진길;진강규;오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.85-99
    • /
    • 1984
  • The stability of the two-phase flow in a heated channel is of great importance in the design and operation of the boilers and light water nuclear reactors, because it can cause flow oscillations and lead to a violation of thermal limits with resultant overheating of the channels and cladding. This paper presents a systematic evaluation to the variation effects of the basic four (4) dimensionless parameters in a homogeneous equilibrium model. The flow stability is examined on the ground of static characteristic curves. The complicated transfer function of flow dynamics which gives consideration to the transport lag of density wave is derived, and the transient flow stability is analysed by applying the Nyquist stability criterion in control engineering. The analysis results summed up as follows 1. The coolant flow becomes stable in large friction number and specific flow, while it is unstabale in small friction number and flow. 2. Large phase-change number and Froude number destabilize the two-phase flow, but small numbers stabilize it. The effect to variation of phase-change number is more dominant compared with Froude number. 3. The dynamic analysis is required to hold the sufficient safety of heated channels since only static results does not keep it. The special attention could be payed in the design and operation of heat engines, because the unstaable region exists within the stable boundary at small and middle phase-change number and Froude number.

  • PDF