DOI QR코드

DOI QR Code

A study on statistical characteristics of time-varying underwater acoustic communication channel influenced by surface roughness

수면 거칠기에 따른 수면 경로의 시변 통신채널 통계적 특성 분석

  • 황인성 (한양대학교 해양융합과학과) ;
  • 최강훈 (LIG 넥스원(주)) ;
  • 최지웅 (한양대학교 ERICA 해양융합공학과)
  • Received : 2023.06.26
  • Accepted : 2023.08.17
  • Published : 2023.11.30

Abstract

Scattering by Sea surface roughness occurs due to sea level roughness, communication performance deteriorates by causing frequency spread in communication signals and time variation in communication channels. In order to compare the difference in time variation of underwater acoustic communication channel according to the surface roughness, an experiment was performed in a tank owned by Hanyang University Ocean Acoustics Lab. Artificial surface roughness was created in the tank and communication signals with three bandwidths were used (8 kHz, 16 kHz, 32 kHz). The measured surface roughness was converted into a Rayleigh parameter and used as a roughness parameter, and statistical analysis was performed on the time-varying channel characteristics of the surface path using Doppler spread and correlation time. For the Doppler spread of the surface path, the Weighted Root Mean Square Doppler spread (wfσν) that corrected the effect of the carrier frequency and bandwidth of the communication signal was used. Using the correlation time of the surface path and the energy ratio of the direct path and the surface path, the correlation of total channels was simulated and compared with the measured correlation time of total channels. In this study, we propose a method for efficient communication signal design in an arbitrary marine environment by using the time-varying characteristics of the sea surface path according to the sea surface roughness.

해수면 거칠기에 의해 해수면 산란이 발생하면 통신신호의 주파수 확산과 통신채널 시변동성을 야기하여 통신성능을 악화시킨다. 수면 거칠기에 따른 통신채널의 시변동성 차이를 비교하기 위하여 한양대학교 해양음향공학연구실 수조에서 실험을 수행하였다. 수조에서 인위적인 수면 거칠기를 생성하고 대역폭에 따른 차이를 비교하기 위하여 3가지 대역폭을 갖는 통신신호를 사용하였다. 측정된 수면 거칠기는 레일리 파라미터로 변환하여 거칠기에 대한 파라미터로써 사용하였으며, 수면 경로의 시변 채널 특성은 도플러 확산과 상관시간을 이용하여 통계적 분석을 수행하였다. 수면 경로의 도플러 확산은 통신신호의 반송 주파수와 대역폭의 영향을 보정한 가중 유효 도플러 확산(Weighted Root Mean Square Doppler spread, wfσν)을 사용하였다. 수면 경로의 상관시간과 직접 경로와 수면 경로의 에너지 비율을 이용하여 전체 채널의 상관관계를 모의하고 측정된 전체 채널의 상관시간과 비교하였다. 본 연구에서는 해수면 거칠기에 따른 해수면 경로의 시변 채널특성을 이용하여 임의의 해양환경에서 효율적인 통신신호 설계를 위한 방법을 제안한다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었습니다 (No. 2020R1A2C2007772).

References

  1. J. W. Choi, S. Kim, S.-U. Son, and S.-M. Kim, "Underwater acoustic wireless communication channel characteristics according to marine environment variation" (in Korean), J-KICS, 33, 52-62 (2016). 
  2. P. H. Dahl, "On bistatic sea surface scattering: Field measurements and modeling," J. Acoust. Soc. Am. 105, 2155-2169 (1999).  https://doi.org/10.1121/1.426820
  3. P. H. Dahl, "High-frequency forward scattering from the sea surface: The characteristic scales of time and angle spreading," IEEE J. Ocean. Eng. 26, 141-151 (2001).  https://doi.org/10.1109/48.917951
  4. T. Rappaprot, Wireless Communication : Principles and Practice (Microwave J, New Jersey, 2002), pp. 177-210. 
  5. M. Stojanovic, "Underwater acoustic communications : design considerations on the physical layer," Proc. 5th Annu. Conf. Wireless Demand Netw. Syst. Services, 1-10 (2008). 
  6. P. Qarabaqi and M. Stojanovic, "Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels," IEEE J. Ocean. Eng. 38, 701-717 (2013).  https://doi.org/10.1109/JOE.2013.2278787
  7. M. Siderius and M. B. Porter, "Modeling broadband ocean acoustic transmissions with time-varying sea surfaces," J. Acoust. Soc. Am. 124, 137-150 (2008).  https://doi.org/10.1121/1.2920959
  8. R. M. Heitsenrether and M. Badiey, "Modeling acoustic signal fluctuations induced by sea surface roughness," AIP Conf. Proc. 728, 214-221 (2004). 
  9. F. Qu, L. Yang, and T. C. Yang, "High reliability direct-sequence spread spectrum for underwater acoustic communications," Proc. OCEANS, 802-807 (2009). 
  10. P. A. van Walree, T. Jenserud, and M. Smedsrud, "A discrete-time channel simulator driven by measured scattering function," IEEE J. Select. Areas Commun. 26, 1628-1367 (2008). 
  11. M. Biguesh and A. B. Gershman, "Training-based MIMO channel estimation: a studyof estimator tradeoffs and optimal training signals," IEEE Trans. Signal Process. 54, 884-893 (2006).  https://doi.org/10.1109/TSP.2005.863008
  12. A. F. Molisch and M. Steinbauer, "Condensed parameter for characterizing wideband mobile radio channels," Int. J. Wirel. Inf. Netw. 6, 133-154 (2006). 
  13. T. C. Yang, "Environmental effects on phase coherent underwater acoustic communications: A perspective from several experimental measurements," AIP Conf. Proc. 728, 90-97 (2004). 
  14. T. C. Yang, "Measurements of temporal coherence of sound transmissions through shallow water," J. Acoust. Soc. Am. 120, 2595-2614 (2006).  https://doi.org/10.1121/1.2345910
  15. J. W. Kamphuis, Introduction to Coastal Engineering and Management (World Scientific Publishing Company, Kingston, 2000), pp. 51-60. 
  16. L. H. Holthujisen, Wave in Ocean and Coastal Waters (Cambridge University Press, Cambridge, 2007), pp. 27-36. 
  17. L. Berkhovskikh and Y. P. Lysanov, Fundamentals of Ocean Acoustics (Springer, New York, 1982), pp. 183-214. 
  18. J. A. Ogilvy, Theory of Wave Scattering From Random Rough Surfaces (CRC Press, Florida, 1991), pp. 2-8. 
  19. W. J. Pierson and L. Moskowitz, "A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii," J. Geophys. Res. 69, 5181-5190 (1964).  https://doi.org/10.1029/JZ069i024p05181
  20. "APL-UW High-frequency ocean environmental acoustic models handbook," Washington univ. seattle applied physics. lab., Tech. Rep., 1994. 
  21. T. H. C. Herbers, P. F. Jessen, T. T. Janssen, D. B. Colbert, and J. H. Macmahan, "Observing ocaen surface waves with GPS-Tracked buoys," J. Atmos. Oceanic Technol. 29, 944-959 (2012). https://doi.org/10.1175/JTECH-D-11-00128.1