Experimental and Simulation Study of PEMFC based on Ammonia Decomposition Gas as Fuel

  • Zhao, Jian Feng (College of Power Engineering, Naval University of Engineering) ;
  • Liang, Yi Fan (College of Power Engineering, Naval University of Engineering) ;
  • Liang, Qian Chaos (College of Power Engineering, Naval University of Engineering) ;
  • Li, Meng Jie (College of Power Engineering, Naval University of Engineering) ;
  • Hu, Jin Yi (College of Power Engineering, Naval University of Engineering)
  • Received : 2021.04.15
  • Accepted : 2021.06.02
  • Published : 2022.02.28

Abstract

Compared with hydrogen, ammonia has the advantages of high gravimetric hydrogen densities (17.8 wt.%), ease of storage and transportation as a chemical hydrogen storage medium, while its application in small-scale on-site hydrogen production scenarios is limited by the need for complex separation equipment during high purity hydrogen production. Therefore, the study of PEMFC, which can directly utilize ammonia decomposition gas, can greatly expand the application of fuel cells. In this paper, the output characteristics, fuel efficiency and the variation trend of hydrogen concentration and local current density in the anode channel of fuel cell with the output voltage of PEMFC fueled by ammonia decomposition gas were studied by experiment and simulation. The results indicate that the maximum output power of the hybrid fuel decreases by 9.6% compared with that of the pure hydrogen fuel at the same inlet hydrogen equivalent. When the molar concentration of hydrogen in the anode channel is less than 0.12, the output characteristics of PEMFC will be seriously affected. Employing ammonia decomposition gas as fuel, the efficiency corresponding to the maximum output power of PEMFC is approximately 47%, which is 10% lower than the maximum efficiency of pure hydrogen.

Keywords

References

  1. Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Nat. Energy, 2018, 3(4), 279-289. https://doi.org/10.1038/s41560-018-0108-1
  2. M. Khzouz, E. I. Gkanas, S. Jia, F. Sher, M. A. Qubeissi, Energies, 2020, 13(15), 3783. https://doi.org/10.3390/en13153783
  3. R. Moradi, K. M. Groth, Int. J. Hydrog. Energy, 2019, 44(23), 12254-12269. https://doi.org/10.1016/j.ijhydene.2019.03.041
  4. X. Wu , N. Li, X. Wang, W. Zhao. IEEE Transactions on Sustainable Energy, 12(2), 1020-1031.
  5. G. Yang, Y. Jiang, Int. J. Energy Res., 2020, 44(11), 8340-8361. https://doi.org/10.1002/er.5440
  6. H. Cheng, B. Meng, C. Li, X. Wang, X. Meng, J. Sunars, Int. J. Hydrog. Energy., 2020, 45(12), 7423-7432. https://doi.org/10.1016/j.ijhydene.2019.04.101
  7. T. Y. Amiri, K. Ghasemzageh, A. Iulianelli, Chem Eng Process, 2020, 157, 108148. https://doi.org/10.1016/j.cep.2020.108148
  8. S.Sengodan , L. Rong , J. Humphreys , D. Du , W. Xu, H. Wang, S. Tao. Renew. Sust. Energ. Rev., 2018, 82, 761-780. https://doi.org/10.1016/j.rser.2017.09.071
  9. N. Lu, D. Xie, Int. J. Chem. React. Eng., 2016, 14(1), 1-31. https://doi.org/10.1515/ijcre-2015-0050
  10. L. Ouyang, K. Chen, J. Jiang, X. S. Yang, M. Zhu, J. Alloys Compd., 2020, 829, 154597. https://doi.org/10.1016/j.jallcom.2020.154597
  11. S. S. Mohammadshahi, E. M. Gray, C. J. Webb, Int. J. Hydrog. Energy., 2016, 41(5), 3537-3550. https://doi.org/10.1016/j.ijhydene.2015.12.050
  12. P. M. Modisha, C. Ouma, R. Garidzirai, P. Wasserscheid, D. Bessarabov, Energy Fuels, 2019, 33(4), 2778-2796. https://doi.org/10.1021/acs.energyfuels.9b00296
  13. P. T. Aaldto-Saksa, C. Cook, J. Kiviaho, T. Repo, J.Power Sources, 2018, 396, 803-823. https://doi.org/10.1016/j.jpowsour.2018.04.011
  14. H. Teng, Q. Pei, C. Ping, J. Energy Chem., 2015, 24(5), 587-594. https://doi.org/10.1016/j.jechem.2015.08.007
  15. M. Aziz, A. T. Wijayanta, A. Nandiyanto, Energies, 2020, 13(12), 3062. https://doi.org/10.3390/en13123062
  16. A. T. Wijayanta, T. Oda, C. W. Purnomo, T. Kashiwagi, M. Aziz, Int. J. Hydrog. Energy., 2019, 44(29), 15026-15044. https://doi.org/10.1016/j.ijhydene.2019.04.112
  17. N. Rajalakshmi, T. T. Jayanth, K. S. Dhathathreyan, Fuel Cells, 2003, 3(4), 177-180. https://doi.org/10.1002/fuce.200330107
  18. I. S. Girnik, Y. I. Aristov, H. Lund, M. J. Kaiser, Energy, 2020, 211.
  19. C. P. Girotto, S. Campos, L. Campos, Heliyon, 2020, 6(2), e03397. https://doi.org/10.1016/j.heliyon.2020.e03397
  20. G. P. Holland, B. R. Cherry, T. M. Alam, J. Phys. Chem, 2004, 108, 16420-16426. https://doi.org/10.1021/jp047884j
  21. B. V. Hassel, J. R. Karra, J. Santana, S. Saita, A. Murray, D. Goberman, Sep. Purif. Technol., 2015, 142, 215-226. https://doi.org/10.1016/j.seppur.2014.12.009
  22. P. Sajjan, V. Nayak, M. Padaki, V. Y. Zadorozhnyy, P. A.Konik, Energy Fuels, 2020, 34(9), 11699-11707. https://doi.org/10.1021/acs.energyfuels.0c02030
  23. A. Alkali, J. Power Energy Eng., 2020, 8(02), 1. https://doi.org/10.4236/jpee.2020.82001
  24. H. Hunter, J. W.Makepeace, T. J. Wood, O. S. Mylius, M.G. Kibble, J. B. Nutter, J. Power Sources, 2016, 329, 138-147. https://doi.org/10.1016/j.jpowsour.2016.08.004
  25. S. Liu, T. Chen, Y. Xie, Int J Green Energy., 2020, 17(4), 255-273. https://doi.org/10.1080/15435075.2020.1722133
  26. S. A. Grigoriev, A. A. Kalinnikov, N. V. Kuleshov, P. Millet, Int. J. Hydrog. Energy., 2013, 38(20), 8557-8567. https://doi.org/10.1016/j.ijhydene.2012.12.021
  27. N. Ahmadi, A. D. advand, I. Mirzaei, S. Rezazadeh, Int. J. Energy Res., 2018, 42(8), 2805-2822. https://doi.org/10.1002/er.4069
  28. J. X. Liu, H. Guo, F. Ye, C. F. Ma, Energy, 2017, 119, 299-308. https://doi.org/10.1016/j.energy.2016.12.075
  29. S. W. Tsai, Y. S. Chen, Appl. Energy, 2017, 188, 151-159. https://doi.org/10.1016/j.apenergy.2016.11.128
  30. B. Wang, K. Wu, Z. Yang, K. Jiao, Energy Convers. Manag., 2018, 171, 1463-1475. https://doi.org/10.1016/j.enconman.2018.06.091
  31. S. Yesilyurt, J. B. Siegel, A. G. Stefanopoulou, J Fuel Cell Sci Technol, 2012, 9(2).
  32. M. Le Bars, M. G. Worster, J. Fluid Mech., 2006, 550, 149-173. https://doi.org/10.1017/S0022112005007998
  33. R. J. Kee, M. E. Coltrin, P. Glarborg, Chemically Reacting Flow: Theory, Modeling, and Simulation, Wiley, American, 2017, 91-149.
  34. E. U. Ubong, Z. Shi, X. Wang, J. Electrochem. Soc., 2009, 156(10), B1276. https://doi.org/10.1149/1.3203309