• Title/Summary/Keyword: Ceramic Discharge Metal Halide Lamp

Search Result 13, Processing Time 0.027 seconds

Electrical Characteristics and Discharge Condition of Ceramic Metal Halide Lamp with Operating Property (구동특성에 따른 세라믹 메탈 할라이드 램프의 전기적 특성 및 방전현상에 관한 연구)

  • Jang, Hyeok-Jin;Kim, Nam-Gon;Yang, Jong-Kyung;Kim, Woo-Young;Park, Hyung-Jun;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.388-389
    • /
    • 2009
  • The use of arc tubes made of ceramic material further enhanced some of the metal halide lamp's properties. These properties translate into higher efficacy with better color rendering, stable color through lamp long life. Recently, due to an increase in the application of the ceramic metal-halide lamp, the study for the property etc. according to Ballast's driving scheme and the study for arc tube material, optimization of gas and so on are being proceeded to improve the property of the lamp. Especially, to control ceramic metal-halide lamp, the vigorous study and practical use with respect to Electronic Ballast, which has been improved in the disadvantages of the conventional Magnetic Ballast are made. In this paper, Electrical characteristics and gas insulation destroy time are analyzed by comparing magnetic ballast with electronic ballast.

  • PDF

Optical Properties with Arc Tube Structure of Ceramic Metal Halide lamps (세라믹 메탈할라이드 램프 아크튜브 구조에 따른 광학적 특성)

  • Lee, Joo-Hoo;Yang, Jong-Kyung;Kim, Nam-Goon;Jang, Hyeok-Jin;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2244-2248
    • /
    • 2008
  • High intensity metal halide discharge lamp performance, specifically the generated luminous flux and light color content, depends critically on the arc tube design. Factors influencing the design and consequent lamp efficacy include : lamp size, geometry, arc tube composition, fill chemistry, electrode design and excitation modes. Shaping of Polycrystalline Alumina(PCA) can be realized by conventional ceramic processes. Several processes are applied nowadays. Well-known in the ceramic high pressure field for decades are the pressing and the extrusion method. Newly developed slurry and precious forming technologies give the one-body seamless tubes, which improve thickness uniformity and lighting performance. Now, we reported some optical properties with different arc tube structures of ceramic metal halide lamps.

Electrical and Discharge Charcteristics Analysis of Ceramic Metal Halide Lamp with Operating Method (구동방법에 따른 세라믹 메탈 할라이드 램프의 전기적 및 방전특성 분석)

  • Jang, Hyeok-Jin;Yang, Jong-Kyung;Kim, Nam-Gon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1623_1624
    • /
    • 2009
  • The use of arc tubes made of ceramic material further enhanced some of the metal halide lamp’s properties. These properties translate into higher efficacy with better color rendering, stable color through lamp long life. Recently, due to an increase in the application of the ceramic metal-halide lamp, the study for the property etc. according to Ballast's driving scheme and the study for arc tube material, optimization of gas and so on are being proceeded to improve the property of the lamp. Especially, to control ceramic metal-halide lamp, the vigorous study and practical use with respect to Electronic Ballast, which has been improved in the disadvantages of the conventional Magnetic Ballast are made. In this paper, Electrical characteristics and gas insulation destroy time are analyzed by comparing magnetic ballast with electronic ballast.

  • PDF

Optical Properties with Arc Tube Structure of Ceramic Metal-Halide Lamps (세라믹 메탈할라이드 램프의 아크튜브 구조에 따른 광학적 특성)

  • Kim, Woo-Young;Jang, Hyeok-Jin;Yang, Jong-Kyung;Park, Hyung-Jun;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.378-379
    • /
    • 2009
  • High intensity metal halide discharge lamp performance, specifically the generated luminous flux and light color content, depends critically on the arc tube design. Factors influencing the design and consequent lamp efficacy include : lamp size, geometry, arc tube composition, fill chemistry, electrode design and excitation modes. Shaping of Polycrystalline Alumina(PCA) can be realized by conventional ceramic processes. Several processes are applied nowadays. Well-known in the ceramic high pressure field for decades are the pressing and the extrusion method. Newly developed slurry and precious forming technologies give the one-body seamless tubes, which improve thickness uniformity and lighting performance. Now, we reported some optical properties with different arc tube structures of ceramic metal halide lamps.

  • PDF

Analysis of the Effect on the Performance of Ceramic Metal Halide Lamp by the Loss of Elements that have been Filled in Arc Tube (아크튜브내의 구성물 손실이 세라믹 메탈 핼라이드 램프의 특성에 미치는 영향분석)

  • Jang, Hyeok-Jin;Yang, Jong-Kyung;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2446-2452
    • /
    • 2009
  • A Ceramic Metal-halide lamp is achieved by adding multiple metals to a basic mercury discharge. Because the vapor pressure of most metals is very much lower than mercury itself, metal-halide salts of the desired metals, having higher vapor pressures, are used to introduce the material into the basic discharge. The metal compounds are usually polyatomic iodides, which vaporize and subsequently dissociate as they diffuse into the bulk plasma. Metals with multiple visible transitions are necessary to achieve high photometric efficiency and good color. Compounds of Sc, Dy, Ho, Tm, Ce, Pr, Yb and Nd are commonly used. The maximum visible efficacy of a Ceramic Metal Halide lamp, under the constant of a white light source, is predicted to be about 450lm/W. This is controlled principally by the chemical fill chosen for a particular lamp. Current these lamps achieve 130lm/W and these life time are the maximum 16,000[hr]. So factors of performance lower are necessary to improve lamp performance. In this paper, we analyzed factors of performance lower by accelerated deterioration test. The lamp was operated with short duration turn-on/turn-off procedure to enhance the effect due to electrode sputtering during lamp ignition. The tested lamp that was operated with a longer turn-on/off(20/20 minutes) showed blackening, changed distance between electrodes and lowered color rendering & color temperature by losses of Dy at 421.18nm, I at 511nm, T1 at 535nm and Na at 588nm compared with the new lamp.

Electronic Ballast Design for Ceramic MHL by using Its Conductance Model (세라믹 MHL의 컨덕턴스 모델을 이용한 전자식 안정기 설계)

  • Park, Chong-Yeon;Shin, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.117-122
    • /
    • 2008
  • This paper presents the conductance model at high frequency of the Ceramic Metal Halide Lamp and the designing method of the electronic ballast with the LCC resonant tank type by using that model. Conductance model is based on a physical phenomenon in the discharge tube of the lamp and model constants of conductance model are obtained by Least Squares Method. After equivalent impedances are determined by the conductance model, The LCC resonance tank is designed by using the equation of the lamp power. Simulation result using PSpice software and experimental results show that the conductance model in this paper is very useful to design the electronic ballast at high frequency for the Ceramic Metal Halide Lamps.

  • PDF

The Property Analysis of Ceramic Metal-Halide Lamp Considering Acoustic Resonance Phenomenon and Design of Inverter by the PSpice Simulation (음향 공명 현상을 고려한 세라믹 메탈핼라이드의 특성 분석과 PSpice 시뮬레이션을 통한 인버터 설계)

  • Jang, Hyeok-Jin;Kim, Nam-Goon;Yang, Jong-Kyung;Lee, Jong-Chan;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1989-1994
    • /
    • 2009
  • This study purposes are improvement of system (lamp & ballast) efficacy with and optical characteristics through the developed ceramic arc tube. The designed electronic ballast is substituted for conventional magnetic ballast. These electric signal and optical, thermal characteristics through the improving efficacy of lighting system compared with conventional magnetic ballast. properties of lamp by driving method is researching in ballast. Particularly, electronic ballasts, which improved against weakness of Magnetic Ballast, are researching and applying to control of ceramic metal-halide lamp. but One major limitation is the acoustic resonance problem in CMH lamps at high-frequency operation. In order to avoid acoustic resonance, driving frequency decided 21[kHz]. Before discharge in this paper. The PSpice simulation result obtained sufficient voltage gain and the ignition voltage obtained over 3[kV] at 75[kHz]. After discharge, driving voltage obtained approximately 90[Vrms] at 21[kHz].

Analysis of Effects on the performance of ceramic metal halide lamp by the loss of elements that have been filled in arc tube

  • Jang, Hyeok-Jin;Yang, Jong-Gyeong;Lee, Jong-Chan;Kim, U-Yeong;Sin, Ik-Tae;Park, Dae-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.219-219
    • /
    • 2009
  • ceramic metal halide lamps are a subset of high intensity discharge lamps so named because of their high radiance These lamps weak ionized plasma in a fire-resisting but light transmissive wrapping by the corridor of current through atomic and molecular vapors. for commercial applications, For commercial applications, the conversion of electric power to light must occur with good efficiency and with sufficient spectral content throughout the visible (380-800 nm) to permit the light so generated to render colors comparable to natural sunlight. the purpose of this paper is to carry out a study on the variation of ageing time(2000 On/Off[hr]) on the performance of 150W CMH lamps. Experimental results show that the blackening by reacting W(tungsten)with I atomic has been created in the arc tube of an ageing lamp(2000 On/Off[hr]), the arc was unstable, and increased a lamp resistance made lamp voltage increases significantly. Also, Color temperature of the ageing lamp was moved by the losses of Ho with Dy atomics and by recombination of Na with I.

  • PDF

Analysis of Arc Tube Properties by Degradation in Ceramic Metal Halide Lamp

  • Yang, Jong-Kyung;Jang, Hyeok-Jin;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.123-127
    • /
    • 2011
  • To clarify the relations of optical properties to the main factors responsible for the loss and damage of luminous efficacy, a 20 min turn-on/turn-off test for 2,000 h for a ceramic metal halide lamp is conducted. The corrosion rates of the arc tube wall and electrode are estimated based on thermal stress. Wall blackening is attributed to the tungsten being transported from the hot electrode tips to the relatively cold arc tube wall. Furthermore, the grain boundaries of the arc tube are changed by the degradation. Distortion of the electrode is observed, and the ignition and the driving voltage of the load both increase. Finally, the color rendering index and the color coordinates are changed after the degradation. The luminous flux and the intensity of the luminous distribution are decreased significantly.

Development of an Electronic Ballast for 70W Ceramic Discharge Metal Halide Lamps with Step Down Converter (강압형 컨버터를 이용한 70W CDM 램프용 전자식 안정 기의 개발)

  • 김일권;길경석;김진모
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.7
    • /
    • pp.1055-1061
    • /
    • 2002
  • This paper deals with a design and fabrication of an electronic ballast for 70[W] ceramic discharge metal halide lamps. The proposed ballast is composed of a rectifier, an active power factor correction circuit (PFC), a half-bridge inverter, a LC resonant circuit and a microprocessor. The developed ballast also includes a specially designed time circuit which provides reignition signal of lamps. Running frequency of the ballast is .jet at 40[kHz] to avoid acoustic-resonance and flickering. From the experimental results, input power factor and efficiency of the ballast are estimated 99.8[%] and 93.1[%], respectively.