• Title/Summary/Keyword: Centrifuge model

Search Result 254, Processing Time 0.033 seconds

Investigation of Seismic Response for Deep Temporary Excavation Retaining Wall Using Dynamic Centrifuge Test (동적원심모형실험을 통한 대심도 가설 흙막이 벽체 지진 시 거동 연구)

  • Yun, Jong Seok;Han, Jin-Tae;Kim, Jong-Kwan;Kim, Dongchan;Kim, Dookie;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.119-135
    • /
    • 2022
  • This paper used dynamic centrifuge tests to examine the seismic response for a deep temporary retaining wall with four input motions of 100, 1,000, and 2,400 years of return periods. The centrifuge model was designed based on an actual deep excavation design with a 50 m maximum excavation depth. The model backfill was prepared with dry silica sand at a relative density of 55%, and the retaining wall was modeled as a 24.8 m height diaphragm wall supported by struts. Acceleration response was amplified at the backfill surface, top of the wall, and near bedrock. However, in the middle of the model, input motion was de-amplified. The member forces of the wall and strut induced by the seismic load, which excited, were compared with the member force at rest condition. The wall's maximum negative and positive moments were increased to 36% and 10% compared to the maximum moment at rest. The maximum axial force increases to 70% of the at rest axial force on the bottom strut. The equivalent static analysis using Mononobe-Okabe (M-O) and Seed-Whitman (S-W) seismic earth pressures were compared to the centrifuge results. Considering the bending moment, the analysis results with the M-O theory underestimates but that with the S-W theory overestimates.

Centrifuge Model Tests on Trafficability of Very Soft Ground Treated with Geotextile and Sand Mat (토목섬유와 모래로 처리된 초연약지반의 장비주행성에 대한 원심모형실험)

  • Jun, Sang-Hyun;Lee, Jong-Ho;Yoo, Nam-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.13-23
    • /
    • 2010
  • In this study, centrifuge model tests with 50 g gravitational condition were performed to evaluate the bearing capacity of very soft ground, improved by spreading geotextile and sand on the surface of ground, for the heavy machinery to be able to access. For undrained shear strength of ground model, prepared with the clay sampled from the field, being in the range of 3.1~11.7 kPa, bearing capacity tests were performed with the model footing and the loading system built to simulate the heavy machinery on the ground model treated with geotextile and sand. Test results were compared with theoretically and numerically evaluated ones. Test results about load-settlement curves showed that the bearing capacity increases with the increase of the undrained shear strength of ground. Punching shear or local shear failure was also observed. For a relatively low undrained shear strength of ground, settlement behavior is found to be crucial to evaluating the trafficability of machinery whereas bearing capacity becomes a dominant factor with the increase of undrained shear strength of ground. The method for assessing the bearing capacity of the ground related to trafficability of machinery is presented by acquiring the regression relationship between the contact pressure of machinery and settlements using load-settlement curves with the change of the undrained shear strength. Furthermore, results of numerical analyses about load-settlement relation are in relatively good agreement with those of centrifuge model test.

Evaluation of seismic p-yp loops of pile-supported structures installed in saturated sand

  • Yun, Jungwon;Han, Jintae;Kim, Doyoon
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.579-586
    • /
    • 2022
  • Pile-supported structures are installed on saturated sloping grounds, where the ground stiffness may decrease due to liquefaction during earthquakes. Thus, it is important to consider saturated sloping ground and pile interactions. In this study, we conduct a centrifuge test of a pile-supported structure, and analyze the p-yp loops, p-yp loops provide the correlation between the lateral pile deflection (yp) and lateral soil resistance (p). In the dry sand model (UV67), the p-yp loops stiffness increased as ground depth increased, and the p-yp loops stiffness was larger by approximately three times when the pile moved to the upslope direction, compared with when it moved to the downslope direction. In contrast, no significant difference was observed in the stiffness with the ground depth and pile moving direction in the saturated sand model (SV69). Furthermore, we identify the unstable zone based on the result of the lateral soil resistance (p). In the case of the SV69 model, the maximum depth of the unstable zone is five times larger than that of the dry sand model, and it was found that the saturated sand model was affected significantly by kinematic forces due to slope failure.

Slope Stability of Waste Landfill Using Textured Geomembrane (Textured 지오맴브레인을 적용한 폐기물 매립장의 사면 안정성 연구)

  • 신은철;윤석호;심진섭
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.141-144
    • /
    • 2000
  • The slope stability of waste landfill has been a problem in domestic and foreign countries. Waste landfills are being constructed in a reclaimed land or mountainous area. But most of these places are consisted of steep slope and hence it is necessary to use the geosynthetic liners in there. The large size direct shear test(30cm x 30cm) equipment was used to determine the interface friction angles between CCLs and soil & geomembranes. The centrifuge model tests were performed to investigate the slope stability with considering various geosynthetic liners conditions and degree of slope. The results of centrifuge model test indicate that the degree of saturation of GCL, roughness of geomembrane, and slope of landfill have greatly influenced on the slope stability of solid waste landfill.

  • PDF

Stability Assessment of the Concrete Faced Gravel Dam and Construction Management for Soil Compaction using GPS system (콘크리트 표면 차수벽형 사력댐의 구조적 안정성 평가 및 GPS 다짐 시공관리)

  • In, Young-Gil;Yoo, Sang-Hwa;Chae, Kwang-Seok;Shin, Dong-Hoon;Seo, Seung-Cheol;Gu, Ja-Duck
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.26-43
    • /
    • 2010
  • To determine the effect of draining for the drainage layer in CFGD(Concrete Faced Gravel Dam) body, centrifuge model tests were performed. Also, soil compaction works are essential to construction of dams in order to avoid unexpected settlement of superstructures. Taking advantage of oscillating accelerometer, this research was made to complement existing methods for assessment of soil stiffness. In order to examine the validity of compaction-degree suggested in the study, tests on vibration characteristics using accelerometers was also performed.

  • PDF

Prediction of Consolidational Settlement of Dredged and Reclaimed Ground (준설매립토지반의 압밀침하량 예측)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.317-327
    • /
    • 2001
  • For soils with high void ratios, the inverse method of utilizing results obtained from centrifuge model test was used to find the constitutive relation of effective stress - void ratio - permeability whereas conventional oedometer test and constant rate of strain consolidation test were also used to fine its relation at ranges of relatively low void ratio. Results of column test about settlement of interface and pore pressure and distribution with time were compared with numerically estimated values to confirm such a constitutive relation as obtained from the inverse method. Consolidational settlement in dredged and reclaimed ground, where the consolidation was in progress, was predicted by using the numerical technique implemented with the finite strain consolidation theory.

  • PDF

Centrifuge Model Tests on Sliding Behavior of Cantilever Retaining Wall due to Surcharges (과재하중에 의한 역T형 옹벽의 활동거동에 관한 원심모형실험)

  • 유남재;유건선;이명욱;이종호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.153-160
    • /
    • 2000
  • 본 연구는 과제하중의 재하폭과 재하위치를 매개변수로 변화시켜 옹벽의 뒤채움재 상부 지표면에서 제한폭의 과재하중작용시 그의 활동거동에 관한 실험적, 수치적 해석적 연구이다. 중력 수준을 1g, 20g,40g로 변화시켜 수행한 원심모형실험을 통해 구한 기초의 극한지지력 및 하중-침하특성, 하중-옹벽수평변위특성에 관하여 조사연구 하였다. 또한, 옹벽의 활동으로 인한 지반파괴의 영향을 받기 시작하는기초의 재하위치를 추정하기 위하여 종래의 얕은 기초의 극한지지력 실험을 수행하여 이들 결과와 함께 비교하였다. 한편, 모형실험결과와 기존의 이론식을 수정보완한 해석 결과와 비교분석하였다.

  • PDF

Analyses on Consolidation Characteristics of Dredged and Reclaimed Soils in Busan Area (부산지역 준설매립지반의 압밀거동 특성 분석)

  • Yoo, Nam-Jae;Kim, Dong-Gun;Hwang, Hee-Seok
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.87-94
    • /
    • 2012
  • For soils with high void ratios, the inverse method of utilizing results obtained from centrifuge model test was used to find the constitutive relation of effective stress - void ratio - permeability whereas conventional oedometer test and constant rate of strain consolidation(CRS) test about settlement of interface and pore pressure and distribution with time were compared with numerically estimated values to confirm such a constitutive relation as obtained from the inverse method. As results of numerical method, the volumetric ratio and reclamation velocity were obtained for the reclamation condition.

  • PDF

An Experimental Study on Overflow and Internal Erosion Protection Technology of a Reservoir (저수지 제체월류 및 내부침식 보호기술 모형실험 연구)

  • Jin, Ji-Huan;Lee, Tae-Ho;Yoo, Jeon-Yong;Im, Eun-Sang;Lee, Seung-Joo;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.181-191
    • /
    • 2019
  • Most of the reservoirs in South Korea are fill dam, and overflow and piping phenomena have been detected as the main causes of failure of fill dam. In this study, an operating ◯◯ reservoir located in Gongju-si is modeled in centrifuge model test to study the behavior of reservoir during water level rise and overflow conditions. In order to simulate seepage and overflow in the real reservoir, the model was constructed in 1/50 scale, and deteriorated and reinforced conduits were installed. After modeling the reinforced and deteriorated conditions of the conduits, LVDTs, pore pressure gauges were installed and centrifuge model tests were carried out with water level rise and overflow conditions in order to analyze the reservoir behavior according to the reinforcement methods. The results of centrifuge model test in water level rise condition show that deteriorated conduit has adverse effects in the stability of the reservoir body, and the conduit which is reinforced by the inverse lining method has enhanced stability of the reservoir body. Moreover, installation of water spillway is seen to prevent the scour and erosion of the reservoir body. The study provides a basic data required for the reinforcement of conduit and water spillway in the reservoir.

FABRICATION OF PLATELET-RICH PLASMA IN A RAT MODEL AND THE EFFICACY TEST IN VITRO (백서에서 혈소판 풍부 혈장의 제작과 유효성에 대한 실험적 연구)

  • Lee, Sang-Hoon;Cho, Young-Uk;Chi, Hyun-Sook;Ahn, Kang-Min;Lee, Bu-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.2
    • /
    • pp.113-122
    • /
    • 2007
  • Purpose: Platelet-rich plasma (PRP) is known to accelerate and/or enhance hard and soft tissue healing and regeneration. As such, PRP has been used in various clinical fields of surgery. Recently there have been several attempts to use PRP in the field of tissue engineering. However, some controversies still exist on exact mechanism and benefits of PRP. Therefore various animal experiments are necessary to reveal the effect of the PRP. However, even if animal experiment is performed, the efficacy of the experiment could not be validated due to absence of an animal PRP model. The purpose of this study is to establish rat PRP model by comparing several PRP fabricating methods, and to assay growth factor concentration in the PRP. Materials and methods: Rat blood samples were collected from nine SD rat (body weight: 600-800g). PRP was prepared using three different PRP fabricating methods according to previously reported literatures. (Method 1: 800 rpm, 15 minute, single centrifuge; Method 2: 1000 rpm, 10 minute, double centrifuge; Method 3: 3000 rpm, 4min and 2500 rpm, 8 min, double centrifuge). Platelet counts were evaluated in an automated machine before and after PRP fabrications. In terms of growth factor assay, prepared PRP were activated with 100 unit thrombin and 10% calcium chloride. Growth factor (PDGF-BB, VEGF) concentrations on incubation time were determined by sandwich-ELISA technique. Results: An average of 3ml (via infraorbital venous plexus) to 15ml (via celiac axis) the rat blood could be collected. By using Method 3 (3000 rpm, 4 min and 2500 rpm, 8 min, double centrifugation), around 1.5ml of PRP could be prepared. This method allowed us to concentrate platelet 3.77-fold on average. PDGF-BB concentration (mean, 1942.10 pg/ml after 1 hour incubation) and VEGF concentration (mean, 952.71 pg/ml after 1 hour incubation) in activated PRP were higher than those in untreated blood. Also PDGF-BB showed constant concentration during 4-hour incubation, while VEGF concentration was decreased after 1 hour. Conclusion: Total 11,000 g minute separation and condensation double centrifuge method can produce efficient platelet-rich plasma. Platelet-rich plasma activated with thrombin has showed higher concentrations of growth factors such as PDGF-BB and VEGF, compared to the control group. Platelet-rich plasma model in a rat model was confirmed in this study.