DOI QR코드

DOI QR Code

Investigation of Seismic Response for Deep Temporary Excavation Retaining Wall Using Dynamic Centrifuge Test

동적원심모형실험을 통한 대심도 가설 흙막이 벽체 지진 시 거동 연구

  • Yun, Jong Seok (Civil & Env. Eng., Kongju National Univ.) ;
  • Han, Jin-Tae (Dept. of Geotechnical Eng. Research, Korea Inst. of Civil Eng. and Building Tech.) ;
  • Kim, Jong-Kwan (Dept. of Geotechnical Eng. Research, Korea Inst. of Civil Eng. and Building Tech.) ;
  • Kim, Dongchan (Dept. of Geotechnical Eng. Research, Korea Inst. of Civil Eng. and Building Tech.) ;
  • Kim, Dookie (Dept. of Civil & Env. Eng., Kongju Nat. Univ.) ;
  • Choo, Yun Wook (Dept. of Civil & Env. Eng., Kongju Nat. Univ.)
  • 윤종석 (공주대학교 건설환경공학과) ;
  • 한진태 (한국건설기술연구원 지반연구본부) ;
  • 김종관 (한국건설기술연구원 지반연구본부) ;
  • 김동찬 (한국건설기술연구원 지반연구본부) ;
  • 김두기 (공주대학교 사회환경공학과) ;
  • 추연욱 (공주대학교 사회환경공학과)
  • Received : 2022.10.26
  • Accepted : 2022.11.03
  • Published : 2022.11.30

Abstract

This paper used dynamic centrifuge tests to examine the seismic response for a deep temporary retaining wall with four input motions of 100, 1,000, and 2,400 years of return periods. The centrifuge model was designed based on an actual deep excavation design with a 50 m maximum excavation depth. The model backfill was prepared with dry silica sand at a relative density of 55%, and the retaining wall was modeled as a 24.8 m height diaphragm wall supported by struts. Acceleration response was amplified at the backfill surface, top of the wall, and near bedrock. However, in the middle of the model, input motion was de-amplified. The member forces of the wall and strut induced by the seismic load, which excited, were compared with the member force at rest condition. The wall's maximum negative and positive moments were increased to 36% and 10% compared to the maximum moment at rest. The maximum axial force increases to 70% of the at rest axial force on the bottom strut. The equivalent static analysis using Mononobe-Okabe (M-O) and Seed-Whitman (S-W) seismic earth pressures were compared to the centrifuge results. Considering the bending moment, the analysis results with the M-O theory underestimates but that with the S-W theory overestimates.

본 논문에서는 대심도 가설 흙막이 벽체의 내진안전성을 검토하기 위해 평균재현주기 2,400년 수준(0.220g)을 목표로 Northridge(1994), Kobe(1995), 인공지진파 그리고 2.5Hz 정현파 총 네 가지 지진파를 가진하는 동적원심모형실험을 수행하였다. 원심모형실험은 대심도 굴착현장을 대상을 모사하였다. 모형지반은 상대밀도 55% 건조사질토지반으로 조성하였고, 모형벽체는 심도 24.8m의 지하연속벽 흙막이벽체와 중구경 강관 지보재로 보강된 공법을 모사하였다. 흙막이 시스템은 기반암 가속도가 배면지반, 벽체 상단과, 기반암 근처 하단부에서 증폭되었고, 중앙부에서는 상대적으로 감쇠되는 경향을 보였다. 벽체 전체최대휨모멘트와 지보재 전체최대축력이 유발되는 시점의 부재력을 정지상태 부재력과 비교하였다. 그 결과, 벽체 휨모멘트는 정모멘트와 부모멘트가 최대 10.1%, 36.2% 증가하였으며, 축력은 하단 지보재에서 최대 70% 증가하였다. 또한, Mononobe-Okabe(M-O) 동적토압이론과 Seed-Whitman(S-W) 동적토압이론을 활용한 등가정적해석을 수행하여 실험결과와 비교하였다. M-O 이론 등가정적해석이 휨모멘트 동적증가분을 과소평가하고, S-W 이론 등가정적해석은 과대평가하였다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원의 주요사업인 "인공지능을 활용한 대심도 지하 대공간의 스마트 복합 솔루션 개발(20220164-001)" 과제 및 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(2021R1A4A1031509)으로 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. AASHOTO (2017), LRFD Bridge design Specification, 8th Edition, American Association of State Highway and Transportation Officials, Washing on, D.C.
  2. ASCE 37-14 (2015), "Design Loads on Structures during Construction", American Society of Civil Engineers, Virginia.
  3. EN 1997-1:2004 (2004), Eurocodes 7 : Geotechnical design - Part 1.
  4. EN 1998-5:2004 (2004), Eurocodes 8 : Design of structures for earthquake resistance - Part 5.
  5. Korea Authority of Land & Infrastructure Safety (2020), Assessment Guideline of Seismic Performance for Existing Facility (Foundations and Soils).
  6. Korea Authority of Land & Infrastructure Safety (2021), Assessment Guideline of Seismic Performance for Existing Facility (Water supply line).
  7. Korea Express Corporation (2020), "Seismic design guideline for bridge on highway".
  8. Ministry of Land, Infrastructure and Transport (2018), Korea Design Standard 17 10 00.
  9. Ministry of Land, Infrastructure and Transport (2020), Korea Design Standard 21 00 00.
  10. Ministry of Land, Infrastructure and Transport (2020), Korea Design Standard 27 17 00.
  11. Ministry of Oceans and Fisheries (2019), Korea Design Standard 64 17 00.
  12. Al Atik, L. and Sitar, N. (2010), "Seismic Earth Pressures on Cantilever Retaining Structures", Journal of Geotechnical and Geoenvironmental Engineering, Vol.136, No.10, pp.1324-1333. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000351
  13. Dassault Systemes (2020), Abaqus 2020 EF documentation. Rhode Island: Hibbitt, Karlsson & Sorensen, Inc.
  14. Gil-Garcia, J. R., Pardo, T. A., and Aldama-Nalda, A. (2013), "Smart Cities and Smart Governments: Using Information Technologies to Address Urban Challenges", Proceedings of the 14th Annual International Conference on Digital Government Research, pp. 296-297.
  15. Hwang G. W. and Song H. Y. (2019), "Development Trends of Underground Space", KISTEP Technology Trends Brief, 2019(14).
  16. Ha, J. G., Jo, S. B., Park, H. J., and Kim, D. S. (2017), "Evaluation of Rocking Behaviors During Earthquake for the Shallow Foundation System on the Weathered Soil Using Dynamic Centrifuge Test", Journal of the Korean Geotechnical Society, Vol.33, No.6, pp. 5-16. https://doi.org/10.7843/KGS.2017.33.6.5
  17. Jo, S. B., Ha, J. G., Choo, Y. W., and Kim, D. S. (2013), "A Case Study of Evaluating Inertial Effects for Inverted T-shape Retaining Wall via Dynamic Centrifuge Test", Journal of the  Korean Geotechnical Society, Vol.29, No.4, pp.33-44. https://doi.org/10.7843/KGS.2013.29.4.33
  18. Kim, D. S., Kim, N. R., Choo, Y. W., and Cho, G. C. (2013), "A Newly Developed State-of-the-art Geotechnical Centrifuge in South Korea", KSCE Journal of Civil Engineering, Vol.17, No.1, pp.77-84. https://doi.org/10.1007/s12205-013-1350-5
  19. Lee, M. J., Yun, J. S., and Choo, Y. W. (2020), "Effect of Lateral Load-Moment Combination on p-y Curves of Large Diameter Monopile for Offshore Wind Turbine: Centrifuge Model Tests", Journal of the Korean Geotechnical Society, Vol.36, No.2, pp. 29-42. https://doi.org/10.7843/KGS.2020.36.2.29
  20. Midas IT (2009), Midas GeoX ver 2.1.0.
  21. Mononobe, N. and Matsuo, M. (1929), "On the Determination of Earth Pressures during Earthquakes", Proc. World Engrg. Congress, Vol.9, pp.179-187.
  22. Peck, R. B., Hanson, W. E., and Thornburn, T. H. (1991), "Foundation Engineering", John Wiley & Sons.
  23. Seed, H. B. and Whitman, R. V. (1970), "Design of Earth Retaining Structures for Dynamic Loads", ASCE Specialty Conference, Lateral Stresses in the Ground and Design of Earth Retaining Structures, Cornell Univ., Ithaca, New York, 103.147.
  24. Wagner, N. B. and Sitar N. (2016), "Seismic Earth Pressure on Basement Walls with Cohesionless Backfill", University of California, Berkeley, UCB GT 16-02.
  25. Woods, E. and Wheelock, C. (2013), "Smart Cities: Infrastructure, Information, and Communications, Builidings and Government (City and Supplier Profile, Market Analysis, and Forecasts)", Navigant Research.