DOI QR코드

DOI QR Code

Prediction of Hydrodynamic Behavior of Unsaturated Ground Due to Hydrogen Gas Leakage in a Low-depth Underground Hydrogen Storage Facility

저심도 지중 수소저장시설에서의 수소가스 누출에 따른 불포화 지반의 수리-역학적 거동 예측 연구

  • Go, Gyu-Hyun (Dept. of Civil Engineering, Kumoh National Institute of Tech.) ;
  • Jeon, Jun-Seo (Dept. of Geotech. Eng. Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, YoungSeok (Hydrogen-Infrastructure Research Cluster, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Hee Won (Dept. of Civil Engineering, Kumoh National Institute of Tech.) ;
  • Choi, Hyun-Jun (Hydrogen-Infrastructure Research Cluster, Korea Institute of Civil Engineering and Building Technology)
  • 고규현 (금오공과대학교 토목공학과) ;
  • 전준서 (한국건설기술연구원 지반연구본부) ;
  • 김영석 (한국건설기술연구원 수소인프라클러스터) ;
  • 김희원 (금오공과대학교 토목공학과) ;
  • 최현준 (한국건설기술연구원 수소인프라클러스터)
  • Received : 2022.10.26
  • Accepted : 2022.11.03
  • Published : 2022.11.30

Abstract

The social need for stable hydrogen storage technologies that respond to the increasing demand for hydrogen energy is increasing. Among them, underground hydrogen storage is recognized as the most economical and reasonable storage method because of its vast hydrogen storage capacity. In Korea, low-depth hydrogen storage using artificial protective structures is being considered. Further, establishing corresponding safety standards and ground stability evaluation is becoming essential. This study evaluated the hydro-mechanical behavior of the ground during a hydrogen gas leak from a low-depth underground hydrogen storage facility through the HM coupled analysis model. The predictive reliability of the simulation model was verified through benchmark experiments. A parameter study was performed using a metamodel to analyze the sensitivity of factors affecting the surface uplift caused by the upward infiltration of high-pressure hydrogen gas. Accordingly, it was confirmed that the elastic modulus of the ground was the largest. The simulation results are considered to be valuable primary data for evaluating the complex analysis of hydrogen gas explosions as well as hydrogen gas leaks in the future.

최근 증가하는 수소에너지 수요에 대응할 수 있는 안정적인 수소 저장 기술에 대한 사회적 니즈가 증가하고 있으며, 이 중 지중수소저장은 대규모 수소 저장이 가능하여 가장 경제적이고 합리적인 저장 방식으로 인식되고 있다. 국내의 경우, 인공적인 방호구조물을 활용한 저심도 수소 저장 방식을 고려하고 있는데, 이와 관련된 안전기준 확립 및 지반 안정성 평가가 중요해지고 있다. 본 연구에서는 저심도 지중 수소저장시설에서의 수소가스 누출 시 발생할 수 있는 지반의 수리역학적 거동을 복합해석 모델을 통해 평가하였다. 벤치마크 실험을 통하여 해석 모델의 예측 신뢰성을 검증한 후, 메타모델을 활용한 매개변수연구를 수행하여 고압수소가스의 지반 침투에 따른 지표면 융기현상에 대한 영향 인자들의 민감도에 대해 평가하였다. 분석결과, 수소가스의 지반누출에 따른 지표변위 변화에 대한 민감도는 지반의 탄성계수가 가장 큰 것으로 확인되었다. 이러한 연구결과는 향후 수소가스 누출뿐만 아니라 수소가스 폭발에 대한 지반 복합해석 평가 시 유용한 기초자료로 활용될 것이다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20220232-001, 수소도시 기반시설의 안전 및 수용성 확보기술 개발).

References

  1. Bai, M., Song, K., Sun, Y., He, M., Ki, Y., and Sun, J. (2014), "An Overview of Hydrogen Underground Storage Technology and Prospects in China", Journal of Petroleum Science and Engineering, Vol.124, pp.132-136. https://doi.org/10.1016/j.petrol.2014.09.037
  2. Boit, M. A. (1962), "Mechanics of Deformation and Acoustic Propagation in Porous Media", Journal Applied Physics, Vol.33, pp.1482-1498. https://doi.org/10.1063/1.1728759
  3. Booker A. J., Dennis J. E., Frank P. D., Serafini D. B., Torczon V., and Trosset M. W. (1999), "A Rigorous Framework for Optimization of Expensive Functions by Surrogates", Structural optimization, Vol.17, No.1, pp.1-13.
  4. Brooks, R. H. and Corey, A. T. (1966), "Properties of Porous Media Affecting Fluid Flow", Journal of the irrigation and drainage division, Vol.92, No.2, pp.61-88. https://doi.org/10.1061/JRCEA4.0000425
  5. COMSOL Inc., Introduction to Comsol Multiphysics; COMSOL Inc.: Burlington, VT, USA, 2021.
  6. CRIRO (2018), National Hydrogen Roadmap : Pathways to an Economically Sustainable Hydrogen Industry in Australia.
  7. Ebigbo, A., Golfier, F., and Quintard, M. (2013), "A Coupled, Pore-scale Model for Methanogenic Microbial Activity in Underground Hydrogen Storage", Advances in water resources, Vol.61, pp.74-85. https://doi.org/10.1016/j.advwatres.2013.09.004
  8. FCH JU (2019), Hydrogen Roadmap Europe, pp.4-77.
  9. Gawin, D., Baggio, P., and Schrefler, B. A. (1995), "Coupled Heat, Water and Gas Flow in Deformable Porous Media", International Journal for numerical methods in fluids, Vol.20, No.8-9, pp.969-987. https://doi.org/10.1002/fld.1650200817
  10. Go, G. H., Lee, J., and Kim, M. (2020), "Influencing Factors on Freezing Characteristics of Frost Susceptible Soil Based on Sensitivity Analysis", J. of the Kor. Geotech. Soc., Vol.36, No.8, pp.49-60. https://doi.org/10.7843/KGS.2020.36.8.49
  11. Hagemann, B., Rasoulzadeh, M., Panfilov, M., Ganzer, L., and Reitenbach, V. (2015), "Mathematical Modeling of Unstable Transport in Underground Hydrogen Storage", Environmental Earth Sciences, Vol.73, No.11, pp.6891-6898. https://doi.org/10.1007/s12665-015-4414-7
  12. Han, A., Kim, T., Kwon. Y., and Koo, M. H. (2017), "Modeling Geologic Storage of Carbon Dioxide: Effects of Low-permeability Layer on Migration of CO2", Journal of Soil and Groundwater Enviromnent, Vol.22, No.3, pp.42-49.
  13. Heinemann, N., Alcalde, J., Miocic, J. M., Hangx, S. J., Kallmeyer, J., Ostertag-Henning, C., ... and Rudloff, A. (2021), "Enabling Large-scale Hydrogen Storage in Porous Media-the Scientific Challenges", Energy & Environmental Science, Vol.14, No.2, pp. 853-864. https://doi.org/10.1039/D0EE03536J
  14. Heinemann, N., Booth, M. G., Haszeldine, R. S., Wilkinson, M., Scafidi, J., and Edlmann, K. (2018), "Hydrogen Storage in Porous Geological Formations-onshore Play Opportunities in the Midland Valley (Scotland, UK)", International Journal of Hydrogen Energy, Vol.43, No.45, pp.20861-20874. https://doi.org/10.1016/j.ijhydene.2018.09.149
  15. Hoffman R.M., Sudjianto A, Du X, Stout J. (2003), Robust piston design and optimization using piston secondary motion analysis (No. 2003-01-0148), SAE Technical Paper.
  16. Kang, S. G. and Huh, C. (2008), "The Latest Progress on the Development of Technologies for CO₂Storage in Marine Geological Structure and its Application in Republic of Korea", Journal of the Korean Society for Marine Environmental Engineering, Vol.11, No.1, pp.24-34.
  17. Kim, A. R., Kim, H. M., Kim, H. W., and Shinn, Y. J. (2017), "Geomechanical Stability Analysis of Potential Site for Domestic Pilot CCS Project", Tunnel and Underground Space, Vol.27, No.2, pp.89-99. https://doi.org/10.7474/TUS.2017.27.2.089
  18. Kim, K. Y., Kim, T., Kim, J. C., and Han, W. S. (2009), "Numerical Study on Pressure Variation due to Subsurface CO2 injection", Jornal of the Geological Society of Korea, Vol.45, No.5, pp.435-448.
  19. Kim, S. K., Chan, C., Shinn, Y., and Kwon. Y. (2018), "Characteristics of Pohang CO2 Geological Sequenstration Test Site", The Journal of Engineering Geology, Vol.28, No.2, pp.175-182.
  20. Klubertanz, G., Laloui, L., and Vulliet, L. (1997), Numerical modeling of unsaturated porous media as a two and three phase medium: a comparison, Computer Methods and Advances in Geomechanics, 2(CONF), 1159-1164.
  21. Lankof, L. and Tarkowski, R. (2020), "Assessment of the Potential for Underground Hydrogen Storage in Bedded Salt Formation", International journal of hydrogen energy, Vol.45, No.38, pp.19479- 19492. https://doi.org/10.1016/j.ijhydene.2020.05.024
  22. Lewis, R.W. and Schrefler, B.A. (1998), The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd Edition, Wiley.
  23. Liakopoulos, A.C. (1964), Transient flow through unsaturated porous media, University of California, Berkeley.
  24. Matheron, G. (1963), "Principles of Geostatistics", Economic geology, Vol.58, No.8, pp.1246-1266. https://doi.org/10.2113/gsecongeo.58.8.1246
  25. Michalski, J., Bunger, U., Crotogino, F., Donadei, S., Schneider, G. S., Pregger, T., ... and Heide, D. (2017), "Hydrogen Generation by Electrolysis and Storage in Salt Caverns: Potentials, Economics and Systems Aspects with Regard to the German Energy Transition", International Journal of Hydrogen Energy, Vol.42, No.19, pp. 13427-13443. https://doi.org/10.1016/j.ijhydene.2017.02.102
  26. Ozarslan, A. (2012), "Large-scale Hydrogen Energy Storage in Salt Caverns", International journal of hydrogen energy, Vol.37, No.19, pp.14265-14277. https://doi.org/10.1016/j.ijhydene.2012.07.111
  27. Park, S. G. and Cho, S. J. (2008), "Development of Experimental Apparatus for Carbon Dioxide Geological Storage", 2008 Korean Society of Earth and Exploration Geophysicist Conference, pp. 141-144, Oct. 09, 2008.
  28. Sainz-Garcia, A., Abarca, E., Rubi, V., and Grandia, F. (2017), "Assessment of Feasible Strategies for Seasonal Underground Hydrogen Storage in a Saline Aquifer", International journal of hydrogen energy, Vol.42, No.26, pp.16657-16666. https://doi.org/10.1016/j.ijhydene.2017.05.076
  29. Schrefler, B. A. and Simoni, L. (2017), A unified approach to the analysis of saturated-unsaturated elastoplastic porous media. In Numerical Methods in Geomechanics Innsbruck 1988 (pp.205-212). Routledge.
  30. Shi, Z., Jessen, K., and Tsotsis, T. T. (2020), "Impacts of the Subsurface Storage of Natural Gas and Hydrogen Mixtures", International Journal of Hydrogen Energy, Vol.45, No.15, pp. 8757-8773. https://doi.org/10.1016/j.ijhydene.2020.01.044
  31. Shin, H. (2011), "Formulation of Fully Coupled THM Behavior in Unsaturated Soil", J. of the Kor. Geotech. Soc., Vol.27, No.3, pp.75-83. https://doi.org/10.7843/KGS.2011.27.3.075
  32. Shin, H. and Yoon, S. (2022), "Numerical Formulation of ThermoHydro-Mechanical Interface Element", J. of the Kor. Geotech. Soc., Vol.38, No.9, pp.45-52.
  33. Simon, J., Ferriz, A. M., and Correas, L. C. (2015), "HyUnderhydrogen Underground Storage at Large Scale: Case Study Spain", Energy procedia, Vol.73, pp.136-144. https://doi.org/10.1016/j.egypro.2015.07.661
  34. Tarkowski, R. and Czapowski, G. (2018), "Salt Domes in Polandpotential Sites for Hydrogen Storage in Caverns", International Journal of Hydrogen Energy, Vol.43, No.46, pp.21414-21427. https://doi.org/10.1016/j.ijhydene.2018.09.212
  35. Taylor, J. B., Alderson, J. E. A., Kalyanam, K. M., Lyle, A. B., and Phillips, L. A. (1986), "Technical and Economic Assessment of Methods for the Storage of Large Quantities of Hydrogen", International Journal of Hydrogen Energy, Vol.11, No.1, pp.5-22.  https://doi.org/10.1016/0360-3199(86)90104-7