• Title/Summary/Keyword: Centrifugal Blood pump

Search Result 22, Processing Time 0.019 seconds

Hydraulic Design Optimization and Performance Analysis of a Centrifugal Blood Pump (원심형 혈액펌프의 최적화 수력설계 및 성능해석)

  • Park Moo Ryong;Yoo Seong Yeon;Oh Hyoung Woo;Yoon Eui Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.87-94
    • /
    • 2006
  • This paper presents the hydrodynamic design and performance analysis method for a miniaturized centrifugal blood pump using three-dimensional computational fluid dynamics (CFD) code. In order to obtain the hydraulically high efficient configuration of a miniaturized centrifugal blood pump for cardiopulmonary circulation, a well-established commercial CFD code was incorporated considering detailed flow dynamic phenomena in the blood pump system. A prototype of centrifugal blood pump developed by the present design and analysis method has been tested in the mock circulatory system. Predicted results by the CFD code agree very well with in vitro hydraulic performance data for a centrifugal blood pump over the entire operating conditions. Preliminary in vivo animal testing has also been conducted to demonstrate the hemodynamic feasibility for use of centrifugal blood pump as a mechanical circulatory support. A miniaturized centrifugal blood pump developed by the hydraulic design optimization and performance prediction method presented herein shows the possibility of a good candidate for intra and extracorporeal cardiopulmonary circulation pump in the near future.

Study on the Development of Two-Stage Centrifugal Blood Pump for Cardiopulmonary Support System

  • Horiguchi, Hironori;Tsukiya, Tomonori;Nomoto, Takeshi;Takemika, Toratarou;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.4
    • /
    • pp.142-150
    • /
    • 2014
  • In the cardiopulmonary support system with an ECMO (extracorporeal membrane oxygenation), a higher pump head is demanded for a blood pump. In order to realize a blood pump with higher pump head, higher anti-hemolysis and thrombosis performances, a study on the development of unprecedented multistage blood pump was conducted. In consideration of the application of the blood pump for pediatric patients, a miniature two-stage centrifugal blood pump with the impeller's diameter of 40mm was designed and the performance was examined in experiments and computations. Some useful knowledge for a design of the blood pump with higher anti-hemolysis and thrombosis performances was obtained.

Computational Study of Magnetically Suspended Centrifugal Blood Pump (The First Report: Main Flow and Gap Flow)

  • Ogami, Yoshifumi;Matsuoka, Daisuke;Horie, Masaaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.102-112
    • /
    • 2010
  • Artificial heart pumps have attracted the attention of researchers around the world as an alternative to the organ used in cardiac transplantation. Conventional centrifugal pumps are no longer considered suitable for long-term application because of the possibility of occurrence of blood leakage and thrombus formation around the shaft seal. To overcome this problem posed by the shaft seal in conventional centrifugal pumps, the magnetically suspended centrifugal pump has been developed; this is a sealless rotor pump, which can provide contact-free rotation of the impeller without leading to material wear. In Europe, clinical trials of this pump have been successfully performed, and these pumps are commercially available. One of the aims of our study is to numerically examine the internal flow and the effect of leakage flow through the gap between the impeller and the pump casing on the performance of the pump. The results show that the pressure head increases compared with the pump without a gap for all flow rates because of the leakage of the fluid through the gap. It was observed that the leakage flow rate in the pump is sufficiently large; further, no stagnant fluid or dead flow regions were observed in the pump. Therefore, the present pump can efficiently enhance the washout effect.

Evalution of Hemolysis in Axial Flow Blood Pump with Computational Fluid Dynamics Analysis (전산유체해석을 이용한 축류형 혈액펌프의 용혈평가)

  • 임상필;김동욱
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.256-259
    • /
    • 2003
  • Artificial heart is divided pulsation style and nonpulsation style greatly according to flowing of blood. nonpulsation pump is advantage of miniaturization avaliable because it is simple and non-volumic-pump than pulsation pump. Non pulsation pump is derided axial flow style and centrifugal style accordig to rotating style. An axial flow blood pump can be made smaller than a centrifugal blood pump because of its higher specific speed. A hemolysis is an important factor for the development of an axial flow blood pump. It is difficult to identify the areas where hemolysis nun. Evaluation of hemolysis both in in vitro and in vivo require a long time and are costly. Computational fluid dynamics(CFD) analysis enables the engineer to predict hemolysis on a computer. The aims of this study is Computational fluid dynamics in the whole axial flow pump and to verify the accuracy of prediction results of CFD analysis compare with in vitro experimental results.

  • PDF

Improvement of Two-Stage Centrifugal Blood Pump for Cardiopulmonary Support System and Evaluation of Anti-Hemolysis Performance

  • Horiguchi, Hironori;Tsukiya, Tomonori;Takemika, Toratarou;Nomoto, Takeshi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • In cardiopulmonary support systems with a membrane oxygenation such as a percutaneous cardiopulmonary support (PCPS) or an extracorporeal membrane oxygenation (ECMO), blood pumps need to generate the pressure rise of approximately 200mmHg or higher, due to the high hydraulic resistances of the membrane oxygenation and of the cannula tubing. In order to realize the blood pump with higher pressure rise, higher anti-hemolysis and thrombosis performances, the development of novel centrifugal blood pump composed of two-stage has been conducted by the authors. In the present paper, effective attempts to decrease the wall shear stress and to suppress the stagnation are introduced for the prevention of hemolysis and thrombosis in blood pumps. The hemolysis test was also carried out and it was clarified that the decrease of wall shear stress is effective as a guideline of design of blood pumps for improving the anti-hemolysis performance.

Visualization of Relative Flow Patterns in Centrifugal Blood Pump

  • Chan, Weng-Kong;S.C.M Yu;L.P. Chua;Y.W. Wong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1869-1875
    • /
    • 2001
  • The paper presents computational and flow visualization results on a centrifugal blood pump. 4 impeller designs were tested at a rotational speed of 2000 rpm using blood analog as working fluid. All impellers have seven blades but of different geometry (Impellers A3, A4, B2 and R7). Flow visualization within the impeller passages was conducted using an image de-rotation system. A pair of large scale vortices was found within the blades of impeller R7 while a single vortex was found in most of the passages of backward facing impellers (Impellers A3, A4 and B2). To establish the effects of blade geometry on blood cells, CFD was used to simulate the blade to blade flow to provide an estimate of the maximum shear stress. The results showed that though most of the stresses within the blade passages are below a threshold level of 150 N/m$^2$for extensive erythrocyte damage to occur, there are some regions near to the leading edge of the pressure side where the shear stresses a abode threshold level.

  • PDF

Computational Study of the Magnetically Suspended Centrifugal Blood Pump (2nd Report: Pressure Fluctuation and Stability of Impeller Rotation for Different Volute Shapes)

  • Ogami, Yoshifumi;Matsuoka, Daisuke;Horie, Masaaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.4
    • /
    • pp.375-386
    • /
    • 2011
  • The turbo-type blood pump studied in this paper has an impeller that is magnetically suspended in a double volute casing. The impeller rotates with minimal fluctuations caused by fluid and magnetic forces. In order to improve stability of the rotating impeller and to facilitate long-term use, a careful investigation of the pressure fluctuations and of the fluid force acting on the impeller is necessary. For this purpose, two models of the pump with different volute cross-sectional area are designed and studied with computational fluid dynamics software. The results show that the fluid force varies with the flow rate and shape of the volute, that the fluctuations of fluid force decrease with increasing flow rate and that the vibratory movement of the impeller is more efficiently suppressed in a narrow volute.

An Experimental Setup for Measuring the Performance of Blood Pumps (혈액펌프 성능평가를 위한 실험장치 구성)

  • Kim, Sung-Gil;Hong, Seokbin;Kim, Taehong;Kim, Wonjung;Kang, Seongwon;Kang, Shin-Hyoung;Hur, Nahmkeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.55-60
    • /
    • 2016
  • We present an experimental setup for measuring the mechanical performance of centrifugal blood pumps. Using a 3D printer to construct supporting parts and magnetic couplings, we developed the measurement setup that can be used for various types of blood pumps. The experimental setup is equipped with sensors to measure a variety of mechanical characteristics of blood pumps including pressure, flow rate, torque, temperature, and rotating speed. Our experimental measurements for two commercial blood pumps are consistent with data provided by manufacturers, which indicates that the our setup offers the accurate measurements of blood pump performance. Utilizing the experimental setup, we tested aqueous glycerin solutions mimicking the density and viscosity of blood, which enabled us to predict the difference in operations using water and blood.

Experimental Flow Visualisation of an Artificial Heart Pump

  • Tan, A.C.C.;Timms, D.L.;Pearcy, M.J.;McNeil, K.;Galbraith, A.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.210-216
    • /
    • 2004
  • Flow visualization techniques were employed to qualitatively visualize the flow patterns through a 400% scaled up centrifugal blood pump. The apparatus comprised of a scaled up centrifugal pump. high speed video camera. Argon Ion Laser Light Sheet and custom coded particle tracking software. Reynolds similarity laws are applied in order to reduce the rotational speed of the pump. The outlet (cutwater) region was identified as a site of high turbulence and thus a likely source of haemolysis. The region underneath the impeller was identified as a region of lower flow.

A Study on Shape Optimization and Hemolysis Evaluation of Axial Flow Blood Pump by Using Computational Fluid Dynamics Analysis (CFD해석을 이용한 축류형 혈액펌프의 용혈평가 및 형상개량에 관한 기초연구)

  • 김동욱;임상필
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2004
  • The non pulsation blood pump is divided into axial flow and centrifugal style according to the direction of inlet and outlet flow. An axial flow blood pump can be made smaller than a centrifugal blood pump because centrifugal pump's rpm is fewer than axial flow pump. Hemolysis is an important factor for the development of an axial flow blood pump. It is difficult to identify the areas where hemolysis occurs. Evaluation of hemolysis both in in-vitro and in-vivo test requires a long-time and more expensive. Computational fluid dynamics(CFD) analysis enables the engineer to predict hemolysis on a computer which just can get not only amount of htmolysis but also location of hemolysis. It takes shorter time and less expensive than in-vitro test. The purpose of this study is to git Computational fluid dynamics in axial flow pump and to verify the accuracy of prediction by the possibility of design comparing CFD results with in-vitro experimental results. Also, wish to figure out the correction method that can bring improvement in shape of axial flow blood pump using CFD analysis.