• Title/Summary/Keyword: Cement concrete

Search Result 4,033, Processing Time 0.024 seconds

Analysis of Mechanical Properties and Micro structure of Fly Ash Based Alkali-activated Mortar (플라이애쉬 기반(基盤) 알칼리 활성(活性) 모르타르의 역학적(力學的) 특성(特性) 및 미세구조(微細構造) 분석(分析))

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Chung, Young-Soo
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.28-38
    • /
    • 2012
  • The purpose of this paper is to develop the alkali-activated concrete which uses 100% fly ash as a binder without any cement. The compressive strength of the mortar was examined depending on the chemical change in alkali-activator through SEM and SEM/EDS observations and the XRD analysis. It was found from the test that the higher molar concentration induced the greater effect on the initial strength, and that $Si^{4+}$ and $Al^{3+}$ were eluted relative to the compressive strength of mortar. In addition, it was confirmed that Al and Si were determined to be most influential ingredients on the microstructural development of the mortar, and that the different ingredient of the activator was almost no change in solidity from the XRD analysis.

Durability of Ultrarapid-Hardening Polymer-Modified Concretes Using Metakaolin (메타카올린을 혼입한 초속경 폴리머 시멘트 콘크리트의 내구특성)

  • Yoo, Tae-Ho;Chang, Byung-Ha;Hong, Hyun-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.31-38
    • /
    • 2018
  • The effects of polymer-binder ratio and metakaolin content on the properties of ultrarapid-hardening polymer-modified concretes using metakaolin are examined. As a result, regardless of the metakaolin content, the flexural, compressive and adhesion in tension strength of the ultrarapid-hardening polymer-modified concretes tend to increase with increasing polymer-binder ratio. Regardless of the polymer-binder ratio, the strengths of the ultrarapid-hardening polymer-modified concretes increase with increasing metakaolin content, and reaches a maximum at metakaolin content of 5%. The water absorption, carbonation depth and resistance of chloride ion penetration of the ultrarapid-hardening polymer-modified concretes decrease with increasing polymer-binder ratio. The resistance of freezing and thawing improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of polymer dispersion.

New Practical and Eco-friendly Recycling method of FRP Boats (FRP선박의 재처리시스템과 활용성 연구)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.181-186
    • /
    • 2007
  • Despite of environmental problems(safety hazards), mechanical recycling of FRP boats, which involves shredding and grinding of the scrap FRP in a new product. is one of the simpler and more technically proven methods than incineration or reclamation ones. Because FRP is made up of reinforced fiber glass, it is very difficult to break into pieces. It also occurs secondary problem such as air pollution and unacceptable shredding noise level. The another urgent problem which is a serious barrier to FRP recycling is very limited reusable applications. This study is to propose a new method which is efficient and environment friendly waste FRP regenerating system. And it also have shown the polymer cement and fiber-reinforced concrete applications with the waste FRP.

  • PDF

Evaluation of Corrosion Resistance with Grout Type and Tendon (그라우트 품질을 고려한 텐던의 부식저항성 평가)

  • Ryu, Hwa-Sung;An, Ki-Hong;Koh, Kyung-Taek;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.76-82
    • /
    • 2018
  • Grout in duct is very effective protection from tendon corrosion in PSC(Prestressed Concrete) structure. In the work, durability and mechanical tests are performed for two types of grout which are conventionally used one and the improved grout with reduced w/c (water to cement) ratio and silica fume. Tendon system with 1000mm height is prepared and various tests including strength, flow, absorption, and bleeding ratio are conducted. ICM(Impressed Current Method) is adopted for corrosion acceleration in tendon with 12.7mm diameter inside grout. For 2 and 4 days, corrosion acceleration is performed for 2 different type of grout and corrosion amount is investigated. The improved grout shows higher compressive strength by 10 MPa and lower absorption ratio by 50% than the conventional one. It also provides an excellent corrosion reduction to 39.8 %~48.2 % for 2~4 days of acceleration period.

Basic Performance Evaluation of Dry Mortar Recycled Basalt Powder Sludge (현무암석분 슬러지를 재활용한 드라이몰탈의 기초적 성능평가)

  • Ko, Dongwoo;Choi, Heebok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.2
    • /
    • pp.131-138
    • /
    • 2013
  • This study was carried out to investigate the possibility of using basalt powder sludge instead of sand in a normal cement dry mortar as a way to recycle basalt powder sludge, which is a waste product from the manufacturing a process of basalt in Jeju. Basic performance evaluations of the dry mortar material included a compressive strength test, a flexural strength test, and SEM to observe the micro structure. The compressive and flexural strengths were increased to a replacement ratio of 21% of basalt powder sludge, whereby a strength enhancement of about 40% greater than that of normal dry mortar was shown. However, the creation of hydration products affected the replacement ratio of the basalt powder sludge. The possibility of using basalt powder sludge waste was identified in this study, and results showed that the basalt powder sludge waste could be used as a material for a secondary product of concrete.

The Strength and Environmental Friendly Characteristics of Non-chemical Accelerating Shotcrete (비약액계 급결성 숏크리트재의 강도특성과 친환경성)

  • Chun, Byungsik;Park, Dukhyum;Kang, Hyoungnam;Do, Jongnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.29-36
    • /
    • 2008
  • The shotcrete is a NATM technique as a major tunnel support for ground stability after tunnel excavation. Instead of a general concrete lining method, it is a trend for curtail of construction periods and reduction of construction expenses that required to use of the permanent shotcrete lining. This high-strength shotcrete is required to use as a permanent shotcrete lining. This brought out the solution of environmental pollution and harmfulness to human. Accordingly, in this study specimens for strength measurement were made to develop shotcrete possible to develop materials in early with cement mineral accelerator as NATM method construction. It was compared with existing shotcrete material, unconfined compression test, flexural strength test, antiwashout underwater test were experimented. The fish poison test was experimented to evaluate an influence of environment. As a results of the test, unconfined compressive strength and flexural strength were equivalent with 28-curing day strength of existing material. An antiwashout of research subject material was revealed excellently in antiwashout Underwater test. As a results of the fish poison, an evaluation research subject material was founded more environmentally friendly than existing shotcrete.

  • PDF

Lava-calcification of the volcanic cave in Jeju-do island (제주도 화산동굴의 용암석회질화 -제주도 북제주군 협재리 건지굴 중심-)

  • Soh, Dea-Wha
    • Journal of the Speleological Society of Korea
    • /
    • no.67
    • /
    • pp.1-9
    • /
    • 2005
  • The lava-calcification which was found in Geunjisul located in Jeju-do (Korea) was investigated to analyse the cause of calcification through the internal factor of cave structure and surroundings in company with relevant ecological system. The volcanic cave is degenerated after formation from volcano lava extravasation, however, the cave became more stronger with solidification and petrification by the reinforced structure of calcification as the cement in concrete buildings unprecedentedly if the lava-calcification occurred in the cave. Such a Progressive Phenomena of lava-calcification was verified in progress first in Geonjigul located at Hyubjae-ri, but those would be found in other simiiar case of caves distributed and connected with seaside of shelly sand beach.

Cyclic Responses of Steel Reinforced ECC Column under Reversed Cyclic Loading Conditions (철근 보강된 ECC 기둥의 반복하중에 대한 이력거동)

  • Hyun, Jung-Hwan;Shim, Young-Heung;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.75-82
    • /
    • 2015
  • In this study, experimental research was carried out to evaluate steel reinforced ECC (Engineered Cementitious Composites) column, which exhibits excellent crack control property and highly ductile behavior. Ordinary portland cement and high volume fly ash were used as binding materials in the mixture proportions for the purpose of achieving a high level of multiple cracking property with the tightly controlled crack width. To compare with the cyclic behavior of steel reinforced ECC column specimen, a conventional reinforced concrete column was prepared and tested under reversed cyclic loading condition. Based on the cyclic load test, ECC column exhibited higher cyclic behavior, compared to the conventional RC column, in terms of load carrying capacity and energy dissipation capacity.

Durability of Mortar Matrix Replaced with Recycled Fine Aggregates (순환골재(循環骨材)를 혼입(混入)한 모르타르 경화체(硬化體)의 내구(耐久) 특성(特性))

  • Kim, Jong-Pil;Lee, Seung-Tae;Jung, Ho-Seop;Park, Kwang-Pil;Kim, Seong-Soo
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.20-27
    • /
    • 2007
  • This paper presents a detailed experimental study on the durability properties of mortar matrix made with two kind of recycled fine aggregates(RAA, RAB) and five replacement levels (0, 25, 40, 75 and 100) of the recycled fine aggregates as a partial replacement of natural fine aggregate (NA). The durability properties of mortar matrix was evaluated using compressive strength, chloride ion ingress, sulfate attack and carbonation. The test results indicated that the water absorption and Adhered mortar of the recycled fine aggregate was a major factor controlling durability properties. Hereafter, when using built recycled fine aggregate is expected, appropriate removal Adhered mortar and reasonable replacement ratio of recycled fine aggregates was 25% weight of cement are advised to apply to the concrete materials.

Effect of Pretreatment of Mine Tailings on the Performance of Controlled Low Strength Materials (저강도 고유동 충전재의 성능에 미치는 광미 전처리의 영향)

  • Tafesse, Million;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.32-38
    • /
    • 2017
  • For the massive recycling of mine tailings, which are an inorganic by-product of mining process, in the field of civil engineering, pretreatments to extract heavy metals are required. This study focuses on the use of pre-treated tailings as substitute fillers for controlled low-strength material (CLSM). As a comparative study, untreated tailing, microwave-treated tailing and magnetic separated with microwaved tailing were used in this study. Cement contents amounting to 10%, 20% and 30% by the weight of the tailings were designed. Both compressive strength and flowability for all types of mixture were satisfied with the requirements of the American Concrete Institute (ACI) Committee 229, i.e., 0.3-8.3 MPa of compressive strength and longer than 200 mm flowability. Furthermore, all mixtures showed settlements less than 1% by volume of the mix.