DOI QR코드

DOI QR Code

Effect of Pretreatment of Mine Tailings on the Performance of Controlled Low Strength Materials

저강도 고유동 충전재의 성능에 미치는 광미 전처리의 영향

  • Received : 2017.03.08
  • Accepted : 2017.06.19
  • Published : 2017.06.30

Abstract

For the massive recycling of mine tailings, which are an inorganic by-product of mining process, in the field of civil engineering, pretreatments to extract heavy metals are required. This study focuses on the use of pre-treated tailings as substitute fillers for controlled low-strength material (CLSM). As a comparative study, untreated tailing, microwave-treated tailing and magnetic separated with microwaved tailing were used in this study. Cement contents amounting to 10%, 20% and 30% by the weight of the tailings were designed. Both compressive strength and flowability for all types of mixture were satisfied with the requirements of the American Concrete Institute (ACI) Committee 229, i.e., 0.3-8.3 MPa of compressive strength and longer than 200 mm flowability. Furthermore, all mixtures showed settlements less than 1% by volume of the mix.

광산 부산물인 광미를 건설용으로 대량활용하기 위해서는 내부의 중금속을 제거하기 위한 전처리가 필요하다. 본 연구에서는 전처리 된 광미를 필러(Filler)로 혼입한 저강도 고유동 충전재(Controlled low strength material, CLSM)의 성능에 대해 실험적으로 평가하였다. 전처리가 충전재의 저 성능에 미치는 영향을 평가하기 위해서 전처리 되지 않은 광미 이외에도 고주파 가열 처리, 고주파 가열 후 자력선별 처리한 광미를 실험에 사용하였다. 시멘트의 혼입량은 광미 질량의 10%, 20%, 30%로 설정하였다. 배합설계한 모든 충전재는 미국 콘크리트학회의ACI Committee 229에서 제시한 유동성 200 mm 이상 및 강도 0.3-8.3 MPa의 기준을 만족하는 동시에 최종 침하량은 1% 이하임을 확인하였다.

Keywords

References

  1. National Ready Mixed Concrete Association, 1989: What, Why, and How? Flowable Fill Materials, NRMCA, Silver Spring, MD.
  2. Halmen, C., 2005 : Physiochemical characteristics of controlled low strength materials influencing the electrochemical performance and service life of metallic materials, Doctoral Dissertation, Texas A&M University.
  3. Hunsucker, D., Jones, J., Hopkins, T., and Sun, C., 2007 : Developing a byproduct materials information system for the kentucky transportation cabinet, Research Report, University of Kentucky.
  4. American Concrete Institute, Committee 229, Detroit/Michigan-USA, July 1994, Printed in USA.
  5. Tikalsky, P., Gaffney, M., and Regan, R., 2000 : Properties of controlled low strength material containing foundry sand, ACI Mater. J., 97(6), pp. 698-702.
  6. Lianxiang, Du., Kevin, J. F., and D. Trejo., 2002 : Effects of constituent materials and quantities on water demand and compressive strength of controlled low-strength materials, J. Mater. Civil Eng., 14(6), pp. 485-495. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(485)
  7. Charles, E. P., Himanshu, T., and Travis, W. B., 2003 : Cement kiln dust in controlled low-strength materials, ACI Mater. J., 100(6), pp. 455-462.
  8. Shah, H., 2012 : Controlled low strength material (CLSM) produced from limestone fines and other byproducts, Master's Thesis, University of Missouri, Kansas city, USA.
  9. Kim, B. J., Jang, J. G., Park, C. Y., Han, O. H., and Kim, H. K., 2016 : Recycling of Arsenic-rich Mine Tailings in Controlled Low-Strength Materials, J. Clean Prod., 118(1), pp. 151-161. https://doi.org/10.1016/j.jclepro.2016.01.047
  10. Butcher, D. A. and Rowson, N. A., 1995 : Microwave pretreatment of coal prior to magnetic separation, G& B SA., 6(1), pp. 87-97.
  11. Liu, Z., Lei, H. Y., Bai, T., Wang, W. Z., Chen, K., Chen, J. J., and Hu, Q. W., 2015 : Microwave-assisted arsenic removal and the magnetic effects of typical arsenopyrite-bearing mine tailings, Chem. Eng. J., 272(1), pp. 1-11. https://doi.org/10.1016/j.cej.2015.02.084
  12. Kim, J. I., Jung, M. Y., Park, J. H., and Lee, J. S., 2011 : Development of non-sintered construction materials for resource recycling of the flotation tailings, J. KIRR, 20(1), pp. 37-45.
  13. Hall, S. T., 1985 : Enhancement of magnetic susceptibility by leaching and application in mineral separation, Doctoral Thesis, Mcgill University, Montreal, Canada.
  14. ASTM, D6103, 2000 : Standard Test Method for Flow Consistency of Controlled Low-Strength Material (CLSM). ASTM International, PA, USA.
  15. ASTM C232, 2014 : Standard Test Method for Bleeding of Concrete, ASTM International, West Conshohocken, PA, USA.
  16. ASTM C109, 2016 : Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, PA, USA.
  17. Kim, H., Koh, T., and Pyo, S., 2016 : Enhancing flowability and sustainability of ultra-high performance concrete incorporating high replacement levels of industrial slags, Constr. Build Mater., 123(1), pp. 153-160. https://doi.org/10.1016/j.conbuildmat.2016.06.134