• Title/Summary/Keyword: Cathodic

Search Result 752, Processing Time 0.022 seconds

Cathodic Polarization of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ on $Ce_{0.8}Gd_{0.2}O_{1.9}$ Electrolyte ($Ce_{0.8}Gd_{0.2}O_{1.9}$ 전해질에서 $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ 양극의 과전압특성)

  • 윤희성;노의범;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.981-987
    • /
    • 1998
  • $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ as air electrode for soild oxide fuel cell was synthesized by a citrate process and its cathodic polarization was determinated by the current interruption method on the Gd-doped ceria as electrolyte. The addition of citric acid increased the exothermic heat for the formation of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ perovskite oxide. The degree of the initial particle agglomeration was affected by the exothermic heat. Also the increase of cal-cination temperature enlarged the particle size and the higher sintering temperature accelerated the den-sification of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ layer after its being painted on $Ce_{0.8}Gd_{0.2}O_{1.9}$ electrolyte. In this study $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ synthesized by citrate process of which the molar ratio of citric acid to metal nitrate was 2 calcined at $650^{\circ}C$ for 2hr and sintered at 1100 at $1200^{\circ}C$ for 4 hrs after slurry coating on Ce0.8Gd0.2O1.9 electrlyte showed the lowest cathodic polarization.

  • PDF

Monitoring Cathodic Shielding and Corrosion under Disbonded Coatings

  • Varela, F.;Tan, M. YJ;Hinton, B.;Forsyth, M.
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.109-114
    • /
    • 2017
  • Monitoring of corrosion is in most cases based on simulation of environmental conditions on a large and complex structure such as a buried pipeline using a small probe, and the measurement of thermodynamics and kinetics of corrosion processes occurring on the probe surface. This paper presents a hybrid corrosion monitoring probe designed for simulating deteriorating conditions wrought by disbonded coatings and for measuring current densities and distribution of such densities on a simulated pipeline surface. The concept of the probe was experimentally evaluated using immersion tests under cathodic protection (CP) in high resistivity aqueous solution. Underneath the disbonded area, anodic currents and cathodic currents were carefully measured. Anodic current densities were used to calculate metal loss according to Faraday's law. Calculated corrosion patterns were compared with corrosion damage observed at the surface of the probe after a series of stringent tests. The capability of the probe to measure anodic current densities under CP, without requiring interruption, was demonstrated in high resistivity aqueous solution. The pattern of calculated metal loss correlated well with corrosion products distribution observed at the array surface. Working principles of the probe are explained in terms of electrochemistry.

Regional Cathodic Protection Design of a Natural Gas Distribution Station

  • Yabo, Hu;Feng, Zhang;Jun, Zhao
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.235-240
    • /
    • 2017
  • Regional cathodic protection has significant impact on pipeline integrity management. After risk analyses of a newly built gas distribution station constructed in an area with large dwelling density, risk score was high because of potential threat caused by galvanic corrosion. Except reinforced steel in concrete, there are four kinds of metal buried under earth: carbon steel, galvanized flat steel, zinc rod and graphite module. To protect buried pipeline from external corrosion, design and construction of regional cathodic protection was proposed. Current density was measured with potential using potential dynamic test and boundary element method (BEM) was used to calculate current requirement and optimize best anode placement during design. From our calculation on the potential, optimized conditions for this area were that an applied current was 3A and anode was placed at 40 meters deep from the soil surface. It results in potential range between $-1.128V_{CSE}$ and $-0.863V_{CSE}$, meeting the $-0.85V_{CSE}$ criterion and the $-1.2V_{CSE}$ criterion that no potential was more negative than $-1.2V_{CSE}$ to cause hydrogen evolution at defects in coating of the pipeline.

Hydrogen Evolution Ability of Selected Pure Metals and Galvanic Corrosion Behavior between the Metals and Magnesium

  • Luo, Zhen;Song, Kaili;Li, Guijuan;Yang, Lei
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.323-329
    • /
    • 2020
  • The cathodic hydrogen evolution ability of different pure metals and their long term galvanic corrosion behavior with pure Mg were investigated. The hydrogen evolution ability of pure Ti, Al, Sn and Zr is weak, while that of Fe, W, Cr, and Co is very strong. Initial polarization test could not completely reveal the cathodic behavior of the tested metals during long term corrosion. The cathodic hydrogen evolution ability may vary significantly in the long term galvanic tests for different metals, especially for Al whose cathodic current density reduced to 1/50 of the initial value. The anodic polarization shows that Al and Sn as alloying elements are supposed to provide relatively good passive effect for Mg alloy, while Ag can provide a slight passive effect and Zn has little passive effect.

Optimum Cathodic Protection for Stainless Steel Shaft of Small-Size Boat (소형선박용 스테인리스강 축의 음극방식 응용)

  • Bae, I.Y.;Park, J.D.;Kang, D.S.;Lee, M.H.;Kim, K.J.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.232-233
    • /
    • 2005
  • Stainless steel has been stably used closed by passivity oxidation films($Cr_2O_3$) is made by neutral atmospheric environment. However, passivity oxidation films of the surface of stainless steel occasionally comes to be destroyed in seawater which is influenced by an environment having halogen ion like $Cl^-$, then, localization corrosion comes to occur. Stainless steel 304 for shaft system material of the small-size FRP fishing boat on seawater environments made an experiment on simulation of sacrifical anode(Al, Zn). Through these experiment and study, following results have been obtained ; According to the field inspection and corrosion simulation, the corrosion on the 2nd class stainless steel shaft(STS 304) in FRP fishing boat has been verified to occur by crevice corrosion and galvanic corrosion etc.. According to the comparison and analysis of Stainless steel 304 shaft materials after simulation leaving unprotected and applying cathodic protection, unprotected shaft specimen of stainless steel 304 was severely corroded, but, protected shaft specimen was not totally corroded. This result is assumed to be made by the facts that anodic reaction, $Fe{\rightarrow}Fe^{2+}$ + $2e^-$, has been restricted by the cathodic protection current of sacrificial anode material.

  • PDF

An Analysis of the Protective Potential Distribution against Corrosion for Hull ICCP with Computer simulation (컴퓨터 Simulation을 통한 선체 음극방식(ICCP)의 방식전위분포해석)

  • Im, Gwan-Jin;Kim, Ki-Joon;Lee, Myung-Hoon;Moon, Kyung-Man
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.395-400
    • /
    • 2005
  • The ship hull part is always exposed to severe corrosive environments. Therefore, it should be protected in appropriate ways to reduce corrosion problems. So there are two effective methods in order to protect the corrosion of ship hull. One is the paint coating as a barrier between steel and electrolyte (seawater) and the other is the cathodic protection(CP) supplying protection current. In the conventional design process of the cathodic protection system the required current densities of protected materials have been used. However, the anode position of field or laboratory experiment for obtaining the required current density for CP is significantly different from anode position for real structures. Therefore, the recent CP design must consider the optimum anode position for potential distribution equally over the ship hull. The CP design companies in the advanced countries can obtain the potential distribution results on the cathodic materials by using the computer analysis module. This study would show how to approach the potential analysis in the field of corrosion engineering. The computer program can predict the under protection area on the structure when the boundary condition and analysis procedure are reasonable. In this analysis the polarization curve is converted to the boundary condition in material data.

  • PDF

A Study of Optimizing Cathodic Protection in Comparison of Design Methodologies

  • Choi, Young-Kwan;Choi, Sang-Yule;Shin, Myong-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.11
    • /
    • pp.23-29
    • /
    • 2010
  • The principal factor determining an optimum design method for cathodic protection is finding the protection current for preventing the corrosion of existing, already laid pipe. Some factors currently used to test designs include the sizes and lengths of pipes, soil resistivity, and the coating damage rate. We believe this method and current formulae are not optimum due to the uncertainty of determining the coating damage rate and the corrosion protection current's density. This paper analyzes the amount of protection current obtained by performing a temporary current test using data describing existing laid pipe. We then propose determining the corrosion protection current by using the temporary current test after modifying the formula. In addition, we suggest a way to choose optimized cathodic protection and the process of design by executing the design and taking account of such factors as a site condition of 34km-long non-protected water supply pipe lines (stages I and II) in ${\bigcirc}{\bigcirc}$ region, climate, interferences, and durability.

Derivation of the Cathodic Current Density around the HLW Canister Due to the Radiolysis of Groundwater (고준위 폐기물 처분용기 주변에서의 지하수의 방사분해에 의한 음 전류 밀도 유도)

  • Choi, Heui-Joo;Cho, Dong-Keun;Choi, Jong-Won;Hahn, Pil-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • The oxidizing species are generated from the radiolysis of groundwater in the pore of buffer material around the canister used for the disposal of spent fuels. A mathematical model was introduced to calculate the cathodic current density induced by the oxidant around the canister, which determined the corrosion of carbon steel. An analytical solution was derived to get the cathodic current density in the cylindrical coordinate. The cathodic current densities from both the rectangular coordinate and cylindrical coordinate were compared with each other. The source terms and absorbed dose rate for the calculation of the radiolysis were calculated using the ORIGEN2 and MCNP computer code, respectively. The radius of the canister was determined with the new model in order to prevent the local corrosion. The results showed that the new solution made the cathodic current density around 25 % lower than the Marsh model.

A Study on Mitigation of Rail Corrosion using Sacrificial Anode Cathodic Protection Method (희생양극법을 이용한 레일부식 저감 방안에 관한 연구)

  • Choi, Jung-Youl;Kim, Jun-Hyung;Lee, Kyu-Yong;Kim, Young-Ki;Park, Jong-Yoon;Song, Bong-Hwan;Seol, Jin-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.54-60
    • /
    • 2017
  • A railway rail will be corroded by the repetitive sea wind and fog in the splash and tidal zone such as Youngjong grand bridge. And these rusts of rail could be increased by increasing service period, and it frequently occurred the safety accidents or disorders in electrical problem. In this study, the sacrificial anode cathodic protection method was proposed as a measures for reducing the corrosion of the railway rails in the oceanic climate conditions. As the results of immersion test using the salt water during four months, the sacrificial anode cathodic protection method using the aluminum anode(Al-anode) was evaluated that a distinct effect on corrosion reduction in the rails. Therefore the sacrificial anode cathodic protection method was experimentally proven that a disorders in aspects electric and signal of railway operation condition such as direct fixation track system in Youngjong grand bridge could be prevented by reducing rust falling from the rail. In addition, the installation conditions of the anodes directly affect the transmission range of corrosion potential, the sectional loss of anode, and the corrosion reduction effect. Therefore, to expect the corrosion reduction effect of rails under the oceanic climate conditions for railway track, it was important to adopted the appropriate spacing of anode installation by considering the actual field conditions.

Module-Type Switching Rectifier for Cathodic Protection of Underground and Maritime Metallic Constructions (지하매설 및 해양 금속구조물 음극방식용 모듈 타입 스위칭 정류기)

  • 문상호;김보경;김인동;노의철;권영원;정성우;임헌호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.570-578
    • /
    • 2002
  • Cathodic protection is widely used to prevent corrosion of steel materials buried in the underground and sea. As a rectifier for cathodic protection, the conventional phase-controlled rectifiers have been used so far in spite of such shortcomings as large volume, heavy weight and floor power factor. In order to overcome such disadvantages, this paper proposes a new module-type switching rectifier for cathodic protection, which is composed of two parts, namely, AC/DC converter and module- type DC/DC converter. The AC/DC converter is a single-phase IGBT PWM rectifier, thus resulting in almost unity power factor and controlled DC output voltage. The module-type DC/DC converter operates under ZVS/ZCS switching condition to permit high frequency switching operation. It enables to use high-frequency transformer for electrical isolation, thus reducing volume and weight of overall system and improving system efficiency. It should be anticipated that the proposed rectifier techniques apply to the similar technical areas.